A NEWTON METHOD FOR UNCERTAIN MULTIOBJECTIVE OPTIMIZATION PROBLEMS WITH FINITE UNCERTAINTY SETS

被引:0
|
作者
Ghosh, Debdas [1 ]
Kishor, Nand [1 ]
Zhao, Xiaopeng [2 ]
机构
[1] Department of Mathematical Sciences, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi,221005, India
[2] School of Mathematical Sciences, Tiangong University, Tianjin,300387, China
关键词
Functionals - Gerstewitz functional - Newton's methods - Newton’s method - Ordering relations - Partition sets - S-method - Set optimizations - Uncertain optimizations - Upper set order relation;
D O I
暂无
中图分类号
学科分类号
摘要
35
引用
收藏
相关论文
共 50 条
  • [41] Variable Metric Method for Unconstrained Multiobjective Optimization Problems
    Chen, Jian
    Li, Gao-Xi
    Yang, Xin-Min
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (03) : 409 - 438
  • [42] Multiple reduced gradient method for multiobjective optimization problems
    El Moudden, M.
    El Ghali, A.
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1257 - 1282
  • [43] A relaxed projection method for solving multiobjective optimization problems
    Brito, A. S.
    Cruz Neto, J. X.
    Santos, P. S. M.
    Souza, S. S.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (01) : 17 - 23
  • [44] Launch Pad Method in Multiextremal Multiobjective Optimization Problems
    Lotov, A. V.
    Ryabikov, A. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (12) : 2041 - 2056
  • [45] A constraint function method for solving multiobjective optimization problems
    Lu Baiquan
    Gao Gaiqin
    Wang Fei
    Wang Jin
    Li Jin
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV, 2009, : 224 - 228
  • [46] A NONMONOTONE GRADIENT METHOD FOR CONSTRAINED MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Zhao, Xiaopeng
    Yao, Jen-chih
    Yao, Yonghong
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (06): : 693 - 706
  • [47] Launch Pad Method in Multiextremal Multiobjective Optimization Problems
    A. V. Lotov
    A. I. Ryabikov
    Computational Mathematics and Mathematical Physics, 2019, 59 : 2041 - 2056
  • [48] Barzilai and Borwein’s method for multiobjective optimization problems
    Vahid Morovati
    Latif Pourkarimi
    Hadi Basirzadeh
    Numerical Algorithms, 2016, 72 : 539 - 604
  • [49] Barzilai and Borwein's method for multiobjective optimization problems
    Morovati, Vahid
    Pourkarimi, Latif
    Basirzadeh, Hadi
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 539 - 604
  • [50] Multiple reduced gradient method for multiobjective optimization problems
    M. El Moudden
    A. El Ghali
    Numerical Algorithms, 2018, 79 : 1257 - 1282