A NEWTON METHOD FOR UNCERTAIN MULTIOBJECTIVE OPTIMIZATION PROBLEMS WITH FINITE UNCERTAINTY SETS

被引:0
|
作者
Ghosh, Debdas [1 ]
Kishor, Nand [1 ]
Zhao, Xiaopeng [2 ]
机构
[1] Department of Mathematical Sciences, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi,221005, India
[2] School of Mathematical Sciences, Tiangong University, Tianjin,300387, China
关键词
Functionals - Gerstewitz functional - Newton's methods - Newton’s method - Ordering relations - Partition sets - S-method - Set optimizations - Uncertain optimizations - Upper set order relation;
D O I
暂无
中图分类号
学科分类号
摘要
35
引用
收藏
相关论文
共 50 条
  • [21] On the Newton method for solving fuzzy optimization problems
    Chalco-Cano, Y.
    Silva, G. N.
    Rufian-Lizana, A.
    FUZZY SETS AND SYSTEMS, 2015, 272 : 60 - 69
  • [22] NEWTON'S METHOD FOR INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION PROBLEM
    Upadhyay, Balendu bhooshan
    Pandey, Rupesh krishna
    Liao, Shanli
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (04) : 1633 - 1661
  • [23] A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization
    Prudente, L. F.
    Souza, D. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 1107 - 1140
  • [24] A Nonmonotone Projected Gradient Method for Multiobjective Problems on Convex Sets
    Anibal Carrizo, Gabrie
    Fazzio, Nadia Soledad
    Schuverdt, Maria Laura
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (02) : 410 - 427
  • [25] A Nonmonotone Projected Gradient Method for Multiobjective Problems on Convex Sets
    Gabrie Aníbal Carrizo
    Nadia Soledad Fazzio
    María Laura Schuverdt
    Journal of the Operations Research Society of China, 2024, 12 : 410 - 427
  • [26] A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization
    L. F. Prudente
    D. R. Souza
    Journal of Optimization Theory and Applications, 2022, 194 : 1107 - 1140
  • [27] Derived Sets for Weak Multiobjective Optimization Problems with State and Control Variables
    W. W. Breckner
    Journal of Optimization Theory and Applications, 1997, 93 : 73 - 102
  • [28] Derived sets for weak multiobjective optimization problems with state and control variables
    Breckner, WW
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 93 (01) : 73 - 102
  • [29] MMOGA for Solving Multimodal Multiobjective Optimization Problems with Local Pareto Sets
    Yue, C. T.
    Liang, J. J.
    Suganthan, P. N.
    Qu, B. Y.
    Yu, K. J.
    Liu, S.
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [30] UNCERTAINTY AND METHOD CHOICE IN DISCRETE MULTIOBJECTIVE PROGRAMMING-PROBLEMS
    ESKANDARI, A
    FFOLLIOTT, P
    SZIDAROVSZKY, F
    APPLIED MATHEMATICS AND COMPUTATION, 1995, 69 (2-3) : 335 - 351