Artificial intelligence-enhanced solubility predictions of greenhouse gases in ionic liquids: A review

被引:0
|
作者
Kazmi, Bilal [1 ,3 ]
Taqvi, Syed Ali Ammar [2 ]
Juchelkov, Dagmar [3 ]
Li, Guoxuan [4 ]
Naqvi, Salman Raza [5 ]
机构
[1] Univ Karachi, Dept Appl Chem & Chem Technol, Karachi, Pakistan
[2] NED Univ Engn & Technol, Dept Chem Engn, Karachi, Pakistan
[3] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Dept Elect, 17 Listopadu 15-2172, Ostrava 70800, Czech Republic
[4] Qingdao Univ Sci & Technol, Coll Chem Engn, Zhengzhou Rd 53, Qingdao 266042, Peoples R China
[5] Karlstad Univ, Dept Engn & Chem Sci, Karlstad, Sweden
关键词
Artificial intelligence; Ionic liquid; Neural network; Deep learning; Acid gas capture; Solubility prediction; HYDROGEN-SULFIDE SOLUBILITY; CO2 EQUILIBRIUM ABSORPTION; CARBON-DIOXIDE SOLUBILITY; NEURAL-NETWORK; MODELS; MISCIBILITY; MIXTURES; PRESSURE;
D O I
10.1016/j.rineng.2024.103851
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Greenhouse gas emissions from human activities pose a significant threat to the ecosystem, causing climate change and ecological disruptions. Ionic liquids (ILs) show promise for gas separation and carbon capture, but predicting gas solubility in ILs is challenging due to limited data and complex thermodynamics. Artificial intelligence (AI) offers an innovative approach to improve the efficiency and accuracy of solubility predictions. This review analyzes recent advancements in AI-enabled solubility predictions, focusing on methodologies, models, and applications in gas separation and carbon capture. It examines artificial neural networks, deep learning models, and support vector machines for predicting solubility in ILs, and presents valuable results demonstrating the potential of these techniques. The study highlights AI's transformative power in understanding gas-IL interactions and inspiring environmentally friendly separation processes. It also discusses integrating AI-driven predictions with process modeling tools like Aspen Hysys and Aspen Plus, aiming to stimulate further research in gas separation technologies and pave the way for practical implementation.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Solubility of Gases in Ionic Liquids
    不详
    CHEMICAL ENGINEERING PROGRESS, 2017, 113 (11) : 15 - 15
  • [2] The Solubility of Gases in Ionic Liquids
    Shiflett, Mark B.
    Maginn, Edward J.
    AICHE JOURNAL, 2017, 63 (11) : 4722 - 4737
  • [3] Artificial Intelligence-Enhanced Breast MRI
    Lo Gullo, Roberto
    Marcus, Eric
    Huayanay, Jorge
    Eskreis-Winkler, Sarah
    Thakur, Sunitha
    Teuwen, Jonas
    Pinker, Katja
    INVESTIGATIVE RADIOLOGY, 2024, 59 (03) : 230 - 242
  • [4] Solubility of mixed gases containing carbon dioxide in ionic liquids: Measurements and predictions
    Kim, Y. S.
    Jang, J. H.
    Lim, B. D.
    Kang, J. W.
    Lee, C. S.
    FLUID PHASE EQUILIBRIA, 2007, 256 (1-2) : 70 - 74
  • [5] Artificial Intelligence-Enhanced UUV Actuator Control
    Wang, Zhiyu
    Sands, Timothy
    AI, 2023, 4 (01) : 270 - 288
  • [6] Artificial intelligence-enhanced echocardiography in the emergency department
    Stewart, Jonathon E.
    Goudie, Adrian
    Mukherjee, Ashes
    Dwivedi, Girish
    EMERGENCY MEDICINE AUSTRALASIA, 2021, 33 (06) : 1117 - 1120
  • [7] Artificial intelligence-enhanced opportunistic screening of osteoporosis in CT scan: a scoping Review
    Paderno, Alberto
    Gomes, Elmer Jeto Ataide
    Gilberg, Leonard
    Maerkisch, Leander
    Teodorescu, Bianca
    Koc, Murat
    Meyer, Mathias
    OSTEOPOROSIS INTERNATIONAL, 2024, 35 (10) : 1681 - 1692
  • [8] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Siontis, Konstantinos C.
    Noseworthy, Peter A.
    Attia, Zachi I.
    Friedman, Paul A.
    NATURE REVIEWS CARDIOLOGY, 2021, 18 (07) : 465 - 478
  • [9] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Konstantinos C. Siontis
    Peter A. Noseworthy
    Zachi I. Attia
    Paul A. Friedman
    Nature Reviews Cardiology, 2021, 18 : 465 - 478
  • [10] Artificial Intelligence-Enhanced Electrocardiography for Prediction of Incident Hypertension
    Sau, Arunashis
    Barker, Joseph
    Pastika, Libor
    Sieliwonczyk, Ewa
    Patlatzoglou, Konstantinos
    Mcgurk, Kathryn A.
    Peters, Nicholas S.
    O'Regan, Declan P.
    Ware, James S.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    JAMA CARDIOLOGY, 2025, 10 (03) : 214 - 223