A bifurcation and multiplicity result for a critical growth elliptic problem
被引:0
|
作者:
El Manouni, Said
论文数: 0引用数: 0
h-index: 0
机构:
Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi ArabiaImam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
El Manouni, Said
[1
]
Perera, Nishka
论文数: 0引用数: 0
h-index: 0
机构:
Florida Inst Technol, Dept Math, 150 W Univ Blvd, Melbourne, FL 32901 USAImam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
Perera, Nishka
[2
]
机构:
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Florida Inst Technol, Dept Math, 150 W Univ Blvd, Melbourne, FL 32901 USA
We consider a Brezis-Nirenberg type critical growth p-Laplacian problem involving a parameter mu> 0 in a smooth bounded domain Omega. We prove the existence of multiple nontrivial solutions if either mu or the volume of Omega is sufficiently small. The proof is based on an abstract critical point theorem that only assumes a local (PS) condition. Our results are new even in the semilinear case p= 2 .