A remark on the existence and multiplicity result for a nonlinear elliptic problem involving the p-Laplacian

被引:0
|
作者
G. A. Afrouzi
S. H. Rasouli
机构
[1] Mazandaran University,Department of Mathematics, Faculty of Basic Sciences
关键词
35J50; 35J55; 35J65; Nonlinear elliptic problem; p-Laplacian; Critical points; Nehari manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, motivated by Wu (J Math Anal Appl 318:253–270, 2006), and using recent ideas from Brown and Wu (J Math Anal Appl 337:1326–1336, 2008), we prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic problem: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} -\Delta_{p}u+m(x)\,u^{p-1}=\lambda \,a(x)\, u^{\alpha-1}+b(x)\,u^{\beta-1}, & x \in \Omega,\\ u=0, & x\in\partial\Omega. \end{array}\right.$$\end{document}Here Δp denotes the p-Laplacian operator defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_{p}z=div\,(|\nabla z|^{p-2}\nabla z),\, p > 2,\Omega\subset \mathbb{R}^N}$$\end{document} is a bounded domain with smooth boundary, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 < \beta < p < \alpha < p* (p*=\frac{pN}{N-p}\, {\rm if}\, N > p,\, p*=\infty\, {\rm if}\, N\leq p),\, \lambda \in \mathbb{R} \setminus \{0\}}$$\end{document} , the weight m(x) is a bounded function with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\| m\|_{\infty} > 0}$$\end{document} and a(x), b(x) are continuous functions which change sign in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\Omega }}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] A remark on the existence and multiplicity result for a nonlinear elliptic problem involving the p-Laplacian
    Afrouzi, G. A.
    Rasouli, S. H.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (06): : 717 - 730
  • [2] On Existence and Multiplicity of Solutions for Elliptic Equations Involving the p-Laplacian
    Wu, Xian
    Chen, Jilin
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (06): : 745 - 755
  • [3] On Existence and Multiplicity of Solutions for Elliptic Equations Involving the p-Laplacian
    Xian Wu
    Jilin Chen
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 745 - 755
  • [4] A Multiplicity Result for the p-Laplacian Involving a Parameter
    Friedemann Brock
    Leonelo Iturriaga
    Pedro Ubilla
    [J]. Annales Henri Poincaré, 2008, 9 : 1371 - 1386
  • [5] A Multiplicity Result for the p-Laplacian Involving a Parameter
    Brock, Friedemann
    Iturriaga, Leonelo
    Ubilla, Pedro
    [J]. ANNALES HENRI POINCARE, 2008, 9 (07): : 1371 - 1386
  • [6] Nehari Manifold and Multiplicity Result for Elliptic Equation Involving p-Laplacian Operator
    ben Ali, K.
    Ghanmi, A.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (04): : 197 - 208
  • [7] EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A FRACTIONAL p-LAPLACIAN ELLIPTIC DIRICHLET PROBLEM
    Gharehgazlouei, Fariba
    Graef, John R.
    Heidarkhani, Shapour
    Kong, Lingju
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (46)
  • [8] Existence and multiplicity results to Neumann problems for elliptic equations involving the p-Laplacian
    Bonanno, Gabriele
    Sciammetta, Angela
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) : 59 - 67
  • [9] Existence results for singular elliptic problem involving a fractional p-Laplacian
    Achour, Hanaa
    Bensid, Sabri
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2361 - 2391
  • [10] Existence results for singular elliptic problem involving a fractional p-Laplacian
    Hanaâ Achour
    Sabri Bensid
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 2361 - 2391