Phase-field modelling of microstructural evolution in primary crystallization

被引:0
|
作者
Bruna, Pere [1 ,3 ]
Pineda, Eloi [2 ,4 ]
Rojas, Jose I. [1 ,4 ]
Crespo, Daniel [1 ,4 ]
机构
[1] Departament de Física Aplicada, EPSC, ESAB Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain
[2] Departament de Física i Enginyeria Nuclear, ESAB Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain
[3] Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, C/ Jordi Girona 29, 08034 Barcelona, Spain
[4] Centre de Recerca de l'Aeronàutica i de l'Espai, Universitat Politècnica de Catalunya, C/ Jordi Girona 29, 08034 Barcelona, Spain
来源
Journal of Alloys and Compounds | 2009年 / 483卷 / 1-2期
关键词
One of the main routes to obtain nanostructured materials is through the primary crystallization of metallic glasses. In such transformations; crystallites with a different composition than the amorphous precursor grow with a diffusion-controlled regime. Particle growth is slowed and eventually halted by the impingement between the concentration gradients of surrounding particles. Primary crystallization kinetics is not well described by the KJMA equation; and this fact was generally ascribed to both the soft-impingement effect and the non-random nucleation. However; recent phase-field simulations showed that the underlying physical reason is the change in the local diffusion properties of the amorphous precursor due to the variation of the composition during the transformation. The kinetics of primary crystallization is thus well described by considering a diffusion coefficient of the slowest diffusing species dependent on the local concentration. The nanostructure developed in such transformations is a key point to explain the macroscopic properties of these materials. In this work the grain size distributions obtained in realistic phase-field simulations of transformations with continuous nucleation and both constant and variable diffusion coefficient are presented. The obtained distributions are analyzed and the physical mechanisms responsible of their different features are recognized. © 2008 Elsevier B.V. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:645 / 649
相关论文
共 50 条
  • [1] Phase-field modelling of microstructural evolution in primary crystallization
    Bruna, Pere
    Pineda, Eloi
    Rojas, Jose I.
    Crespo, Daniel
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 483 (1-2) : 645 - 649
  • [2] Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys
    Kadirvel, Kamalnath
    Kloenne, Zachary
    Jensen, Jacob K.
    Fraser, Hamish
    Wang, Yunzhi
    APPLIED PHYSICS LETTERS, 2021, 119 (17)
  • [3] Phase-Field Modeling of Microstructural Evolution by Freeze-Casting
    Huang, Tsung-Hui
    Huang, Tzu-Hsuan
    Lin, Yang-Shan
    Chang, Chih-Hsiang
    Chen, Po-Yu
    Chang, Shu-Wei
    Chen, Chuin-Shan
    ADVANCED ENGINEERING MATERIALS, 2018, 20 (03)
  • [4] Finite strain phase-field microelasticity theory for modeling microstructural evolution
    Zhao, Pengyang
    Low, Thaddeus Song En
    Wang, Yunzhi
    Niezgoda, Stephen R.
    ACTA MATERIALIA, 2020, 191 : 253 - 269
  • [5] Microstructural Evolution in Elastically-stressed Solids: A Phase-field Simulation
    Sankarasubramanian, R.
    DEFENCE SCIENCE JOURNAL, 2011, 61 (04) : 383 - 393
  • [6] Phase-field modelling of microstructure evolution in solids: Perspectives and challenges
    Steinbach, Ingo
    Shchyglo, Oleg
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (03): : 87 - 92
  • [7] Phase-field modelling of excimer laser lateral crystallization of silicon thin films
    Burtsev, A
    Apel, M
    Ishihara, R
    Beenakker, CIM
    THIN SOLID FILMS, 2003, 427 (1-2) : 309 - 313
  • [8] Microstructural evolution in bitaxial crack-seal veins: A phase-field study
    Ankit, Kumar
    Urai, Janos L.
    Nestler, Britta
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (05) : 3096 - 3118
  • [9] Modelling the evolution of vein microstructure with phase-field techniques - a first look
    Hubert, J.
    Emmerich, H.
    Urai, J. L.
    JOURNAL OF METAMORPHIC GEOLOGY, 2009, 27 (07) : 523 - 530
  • [10] Phase-field models of microstructural pattern formation
    Karma, A
    THERMODYNAMICS, MICROSTRUCTURES AND PLASTICITY, 2003, 108 : 65 - 89