Phase-field modelling of microstructural evolution in primary crystallization

被引:0
|
作者
Bruna, Pere [1 ,3 ]
Pineda, Eloi [2 ,4 ]
Rojas, Jose I. [1 ,4 ]
Crespo, Daniel [1 ,4 ]
机构
[1] Departament de Física Aplicada, EPSC, ESAB Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain
[2] Departament de Física i Enginyeria Nuclear, ESAB Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain
[3] Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, C/ Jordi Girona 29, 08034 Barcelona, Spain
[4] Centre de Recerca de l'Aeronàutica i de l'Espai, Universitat Politècnica de Catalunya, C/ Jordi Girona 29, 08034 Barcelona, Spain
来源
Journal of Alloys and Compounds | 2009年 / 483卷 / 1-2期
关键词
One of the main routes to obtain nanostructured materials is through the primary crystallization of metallic glasses. In such transformations; crystallites with a different composition than the amorphous precursor grow with a diffusion-controlled regime. Particle growth is slowed and eventually halted by the impingement between the concentration gradients of surrounding particles. Primary crystallization kinetics is not well described by the KJMA equation; and this fact was generally ascribed to both the soft-impingement effect and the non-random nucleation. However; recent phase-field simulations showed that the underlying physical reason is the change in the local diffusion properties of the amorphous precursor due to the variation of the composition during the transformation. The kinetics of primary crystallization is thus well described by considering a diffusion coefficient of the slowest diffusing species dependent on the local concentration. The nanostructure developed in such transformations is a key point to explain the macroscopic properties of these materials. In this work the grain size distributions obtained in realistic phase-field simulations of transformations with continuous nucleation and both constant and variable diffusion coefficient are presented. The obtained distributions are analyzed and the physical mechanisms responsible of their different features are recognized. © 2008 Elsevier B.V. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:645 / 649
相关论文
共 50 条
  • [31] Phase-field simulation of microstructural evolution during aging process of Cu-Ag alloys
    Long, Yong-Qiang
    Liu, Ping
    Liu, Yong
    Jia, Shu-Guo
    Tian, Bao-Hong
    Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, 2010, 31 (09): : 46 - 49
  • [32] Three-dimensional phase-field simulation of microstructural evolution in three-phase materials with different diffusivities
    Hamed Ravash
    Jef Vleugels
    Nele Moelans
    Journal of Materials Science, 2014, 49 : 7066 - 7072
  • [33] Phase-field modelling of cohesive interface failure
    de Borst, R.
    Chen, L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (09)
  • [34] Phase-Field Modelling of Fracture in Viscoelastic Solids
    Liu, Zhengkun
    Roggel, Julian
    Juhre, Daniel
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 781 - 786
  • [35] Phase-field modelling of failure in hybrid laminates
    Alessi, R.
    Freddi, F.
    COMPOSITE STRUCTURES, 2017, 181 : 9 - 25
  • [36] Three-dimensional phase-field simulation of microstructural evolution in three-phase materials with different diffusivities
    Ravash, Hamed
    Vleugels, Jef
    Moelans, Nele
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (20) : 7066 - 7072
  • [37] Phase-field fracture modelling of piezoelectric quasicrystals
    Zhao, Simin
    Li, Peidong
    Zheng, Ruifeng
    Fan, Haidong
    Wang, Qingyuan
    ENGINEERING FRACTURE MECHANICS, 2024, 305
  • [38] A phase-field approach for crack modelling of elastomers
    Brighenti, Roberto
    Carpinteri, Andrea
    Cosma, Mattia Pancrazio
    25TH INTERNATIONAL CONFERENCE ON FRACTURE AND STRUCTURAL INTEGRITY, 2019, 18 : 694 - 702
  • [39] Phase-field simulation of rapid crystallization of silicon on substrate
    Steinbach, I.
    Apel, M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 449 : 95 - 98
  • [40] PHASE-FIELD MODELLING FOR CRACK EVOLUTION OF PBX UNDER THERMO-MECHANICAL LOADINGS
    Long, Xu
    Zhu, Jiaqi
    Su, Yutai
    Siow, Kim S.
    Chen, Chuantong
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 1, 2022,