Phase-field modelling of microstructural evolution in primary crystallization

被引:0
|
作者
Bruna, Pere [1 ,3 ]
Pineda, Eloi [2 ,4 ]
Rojas, Jose I. [1 ,4 ]
Crespo, Daniel [1 ,4 ]
机构
[1] Departament de Física Aplicada, EPSC, ESAB Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain
[2] Departament de Física i Enginyeria Nuclear, ESAB Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain
[3] Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, C/ Jordi Girona 29, 08034 Barcelona, Spain
[4] Centre de Recerca de l'Aeronàutica i de l'Espai, Universitat Politècnica de Catalunya, C/ Jordi Girona 29, 08034 Barcelona, Spain
来源
Journal of Alloys and Compounds | 2009年 / 483卷 / 1-2期
关键词
One of the main routes to obtain nanostructured materials is through the primary crystallization of metallic glasses. In such transformations; crystallites with a different composition than the amorphous precursor grow with a diffusion-controlled regime. Particle growth is slowed and eventually halted by the impingement between the concentration gradients of surrounding particles. Primary crystallization kinetics is not well described by the KJMA equation; and this fact was generally ascribed to both the soft-impingement effect and the non-random nucleation. However; recent phase-field simulations showed that the underlying physical reason is the change in the local diffusion properties of the amorphous precursor due to the variation of the composition during the transformation. The kinetics of primary crystallization is thus well described by considering a diffusion coefficient of the slowest diffusing species dependent on the local concentration. The nanostructure developed in such transformations is a key point to explain the macroscopic properties of these materials. In this work the grain size distributions obtained in realistic phase-field simulations of transformations with continuous nucleation and both constant and variable diffusion coefficient are presented. The obtained distributions are analyzed and the physical mechanisms responsible of their different features are recognized. © 2008 Elsevier B.V. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:645 / 649
相关论文
共 50 条
  • [41] Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys
    Warnken, N.
    Ma, D.
    Drevermann, A.
    Reed, R. C.
    Fries, S. G.
    Steinbach, I.
    ACTA MATERIALIA, 2009, 57 (19) : 5862 - 5875
  • [42] Combining microstructural characterization with crystal plasticity and phase-field modelling for the study of static recrystallization in pure aluminium
    Luan, Qinmeng
    Lee, Junyi
    Zheng, Jing-Hua
    Hopper, Christopher
    Jiang, Jun
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [43] An adaptive local algorithm for solving the phase-field evolution equation in the phase-field model for fracture
    Wang, Qiao
    Yue, Qiang
    Huang, Chengbin
    Zhou, Wei
    Chang, Xiaolin
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 214
  • [44] Phase-field modelling of microstructure evolution during processing of cold-rolled dual phase steels
    Rudnizki, Jenny
    Prahl, Ulrich
    Bleck, Wolfgang
    Integrating Materials and Manufacturing Innovation, 2012, 1 (01) : 19 - 31
  • [45] Phase-field modeling of glass crystallization: Change of the transport properties and crystallization kinetic
    Bruna, Pere
    Pineda, Eloi
    Crespo, Daniel
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (8-10) : 1002 - 1004
  • [46] Effect of Al Concentration on the Microstructural Evolution of Fe-Cr-Al Systems: A Phase-Field Approach
    Lee, Jeonghwan
    Park, Kwangheon
    Chang, Kunok
    METALS, 2021, 11 (01) : 1 - 16
  • [47] An introduction to phase-field modeling of microstructure evolution
    Moelans, Nele
    Blanpain, Bart
    Wollants, Patrick
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2008, 32 (02): : 268 - 294
  • [48] Bounding box algorithm for three-dimensional phase-field simulations of microstructural evolution in polycrystalline materials
    Vanherpe, Liesbeth
    Moelans, Nele
    Blanpain, Bart
    Vandewalle, Stefan
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [49] Viscous phase-field modeling for chemo-mechanical microstructural evolution: application to geomaterials and pressure solution
    Guevel, A.
    Rattez, H.
    Veveakis, E.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 207 : 230 - 249
  • [50] Advanced phase-field approach to dislocation evolution
    Levitas, Valery I.
    Javanbakht, Mahdi
    PHYSICAL REVIEW B, 2012, 86 (14)