In this work we construct novel solutions to the set-theoretical entwining Yang-Baxter equation. These solutions are birational maps involving non-commutative dynamical variables which are elements of the Grassmann algebra of order n . The maps arise from refactorisation problems of Lax supermatrices associated to a nonlinear Schr & ouml;dinger equation. In this non-commutative setting, we construct a spectral curve associated to each of the obtained maps using the characteristic function of its monodromy supermatrix. We find generating functions of invariants for the entwining Yang-Baxter maps from the moduli of the spectral curves. Moreover, we show that a hierarchy of birational entwining Yang-Baxter maps with commutative variables can be obtained by fixing the order n of the Grassmann algebra, and we present the cases n = 1 (dual numbers) and n = 2 . Then we discuss the integrability properties, such as Lax matrices, invariants, and measure preservation, for the obtained discrete dynamical systems.