Entwining Yang-Baxter maps over Grassmann algebras

被引:0
|
作者
Adamopoulou, P. [1 ,2 ]
Papamikos, G. [3 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh, Scotland
[3] Univ Essex, Sch Math Stat & Actuarial Sci, Colchester, England
关键词
Yang-Baxter equations; Birational maps; Grassmann algebras; Lax matrices; Discrete dynamical systems; SET-THEORETICAL SOLUTIONS; DARBOUX TRANSFORMATION; VECTOR SOLITONS; EQUATIONS;
D O I
10.1016/j.physd.2024.134469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we construct novel solutions to the set-theoretical entwining Yang-Baxter equation. These solutions are birational maps involving non-commutative dynamical variables which are elements of the Grassmann algebra of order n . The maps arise from refactorisation problems of Lax supermatrices associated to a nonlinear Schr & ouml;dinger equation. In this non-commutative setting, we construct a spectral curve associated to each of the obtained maps using the characteristic function of its monodromy supermatrix. We find generating functions of invariants for the entwining Yang-Baxter maps from the moduli of the spectral curves. Moreover, we show that a hierarchy of birational entwining Yang-Baxter maps with commutative variables can be obtained by fixing the order n of the Grassmann algebra, and we present the cases n = 1 (dual numbers) and n = 2 . Then we discuss the integrability properties, such as Lax matrices, invariants, and measure preservation, for the obtained discrete dynamical systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum Yang-Baxter equation and constant R-matrix over Grassmann algebra
    Duplij S.
    Kotulska O.
    Sadovnikov A.
    Journal of Zhejiang University-SCIENCE A, 2005, 6 (10): : 1065 - 1079
  • [22] On Frobenius algebras and the quantum Yang-Baxter equation
    Beidar, KI
    Fong, Y
    Stolin, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (09) : 3823 - 3836
  • [23] Tropical limit of matrix solitons and entwining Yang–Baxter maps
    Aristophanes Dimakis
    Folkert Müller-Hoissen
    Letters in Mathematical Physics, 2020, 110 : 3015 - 3051
  • [24] Entwining Yang?Baxter maps related to NLS type equations
    Konstantinou-Rizos, S.
    Papamikos, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (48)
  • [25] From Yang-Baxter Maps to Integrable Recurrences
    B. Grammaticos
    A. Ramani
    C.-M. Viallet
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 260 - 270
  • [26] From Yang-Baxter Maps to Integrable Recurrences
    Grammaticos, B.
    Ramani, A.
    Viallet, C. -M.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (02) : 260 - 270
  • [27] Yang-Baxter maps and independence preserving property
    Sasada, Makiko
    Uozumi, Ryosuke
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [28] YANG-BAXTER MAPS AND THE DISCRETE KP HIERARCHY
    Kakei, S.
    Nimmo, J. J. C.
    Willox, R.
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51A : 107 - 119
  • [29] FRT construction for dynamical Yang-Baxter maps
    Shibukawa, Youichi
    Takeuchi, Mitsuhiro
    JOURNAL OF ALGEBRA, 2010, 323 (06) : 1698 - 1728
  • [30] Dynamical braces and dynamical Yang-Baxter maps
    Matsumoto, Diogo Kendy
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (02) : 195 - 206