Surface recombination in organic solar cells: Intrinsic vs. doped active layer

被引:0
|
作者
Akhtanova, Gulnur [1 ]
Parkhomenko, Hryhorii P. [1 ]
Vollbrecht, Joachim [2 ]
Mostovyi, Andrii I. [1 ,2 ]
Schopp, Nora [3 ]
Brus, Viktor [1 ]
机构
[1] Nazarbayev Univ, Sch Sci & Humanities, Dept Phys, Astana 010000, Kazakhstan
[2] Inst Solar Energy Res Hamelin, Dept Photovolta, D-31860 Emmerthal, Germany
[3] First Solar Inc, 28101 Cedar Pk Blvd, Perrysburg, OH 43551 USA
关键词
Non-fullerene acceptors; Non-geminate recombination; Surface recombination; Organic bulk heterojunction solar cells; MOTT-SCHOTTKY ANALYSIS; BULK;
D O I
10.1016/j.orgel.2024.107183
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study extends the analytical model of surface recombination in organic solar cells with an intrinsic active bulk-heterojunction layer. The key finding of the developed multi-mechanism recombination model accounting for the intrinsic active layer is that the slope of V OC vs. ln(Light Intensity) cannot be lower than 1.0 kT/q even at the extremely high concentrations of surface traps. We revealed the difference in recombination-related parameters determined in the scope of the multi-mechanism recombination model for the doped or intrinsic active layer and highlighted the importance of identifying the doping level of the active layer material. This is demonstrated by a synergy of comprehensive simulation and experimental analysis of organic solar cells with donor: acceptor blends: (PM6:Y6, PTB7-Th:COTIC-4F, PTB7-Th:O-IDTBR and PTB7-Th:ITIC-4F).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Intrinsic Sub-Nanocrystalline Silicon Thin Films: Active Layer for Solar Cells
    Mansi Sharma
    Deepika Chaudhary
    S. Sudhakar
    Sushil Kumar
    Silicon, 2021, 13 : 1 - 7
  • [22] Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer
    Lin, Wen-Kai
    Su, Shui-Hsiang
    Yeh, Meng-Cheng
    Huang, Yang-Chan
    Yokoyama, Meiso
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (01)
  • [23] Photodegradation of Si-PCPDTBT:PCBM active layer for organic solar cells applications: A surface and bulk investigation
    Tournebize, Aurelien
    Seck, Mamadou
    Vincze, Andrej
    Distler, Andreas
    Egelhaaf, Hans-Joachim
    Brabec, Christoph J.
    Rivaton, Agnes
    Peisert, Heiko
    Chasse, Thomas
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 323 - 330
  • [24] Charge carrier recombination in organic solar cells
    Proctor, Christopher M.
    Kuik, Martijn
    Thuc-Quyen Nguyen
    PROGRESS IN POLYMER SCIENCE, 2013, 38 (12) : 1941 - 1960
  • [25] DETERMINATION OF RECOMBINATION MECHANISMS IN ORGANIC SOLAR CELLS
    Street, R. A.
    Schoendorf, M.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 79 - 84
  • [26] Interface state recombination in organic solar cells
    Street, R. A.
    Schoendorf, M.
    PHYSICAL REVIEW B, 2010, 81 (20):
  • [27] Charge transport and recombination in organic solar cells
    Street, R. A.
    PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS X, 2011, 8098
  • [28] The identification of recombination centers in organic solar cells
    Street, R. A.
    Northrup, J. E.
    Krakaris, A.
    NANOTECHNOLOGY 2012, VOL 3: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, 2012, : 399 - 402
  • [29] Suppressing Bimolecular Charge Recombination and Energetic Disorder with Planar Heterojunction Active Layer Enables 18.1% Efficiency Binary Organic Solar Cells
    Zhao, Zhenmin
    Zhao, Jingjing
    Chung, Sein
    Cho, Kilwon
    Xu, Weidong
    Kan, Zhipeng
    ACS MATERIALS LETTERS, 2023, 5 (06): : 1718 - 1726
  • [30] Drift-Diffusion and Analytical Modeling of the Recombination Mechanisms in Organic Solar Cells: Effect of the Nonconstant Charge Distribution Inside the Active Layer
    Torto, Lorenzo
    Cester, Andrea
    Wrachien, Nicola
    Seri, Mirko
    Muccini, Michele
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (06): : 1677 - 1684