Agricultural Drought Index Selection using Probability Distribution: Statistical and Linear Regression Approach

被引:0
|
作者
Khandelwal, Ritu [1 ]
Goyal, Hemlata [1 ]
Shekhawat, Rajveer Singh [1 ]
机构
[1] Manipal University Jaipur, Jaipur, India
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Agriculture - Computational complexity - Distribution functions - Drought - Machine learning - Normal distribution - Remote sensing - Statistical tests - Time measurement - Weather forecasting - Weibull distribution
引用
收藏
相关论文
共 50 条
  • [21] Ising model selection using l1-regularized linear regression: a statistical mechanics analysis
    Meng, Xiangming
    Obuchi, Tomoyuki
    Kabashima, Yoshiyuki
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (11):
  • [22] Ising Model Selection Using l1-Regularized Linear Regression: A Statistical Mechanics Analysis
    Meng, Xiangming
    Obuchi, Tomoyuki
    Kabashima, Yoshiyuki
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [23] Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis
    Anshuka Anshuka
    Floris F. van Ogtrop
    R. Willem Vervoort
    Natural Hazards, 2019, 97 : 955 - 977
  • [24] Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis
    Anshuka, Anshuka
    van Ogtrop, Floris F.
    Vervoort, R. Willem
    NATURAL HAZARDS, 2019, 97 (02) : 955 - 977
  • [25] Nonparametric approach for bivariate drought characterization using palmer drought index
    Kim, TW
    Valdés, JB
    Yoo, C
    JOURNAL OF HYDROLOGIC ENGINEERING, 2006, 11 (02) : 134 - 143
  • [26] Variable selection in partial linear regression using the least angle regression
    Seo, Han Son
    Yoon, Min
    Lee, Hakbae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (06) : 937 - 944
  • [27] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [28] Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought
    Abdol Rassoul Zarei
    Mohammad Reza Mahmoudi
    Mohammad Mehdi Moghimi
    Natural Hazards, 2023, 115 : 923 - 946
  • [29] Model selection in linear regression using paired bootstrap
    Rabbi, Fazli
    Khan, Salahuddin
    Khalil, Alamgir
    Mashwani, Wali Khan
    Shafiq, Muhammad
    Goktas, Pinar
    Unvan, Yuksel Akay
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (07) : 1629 - 1639
  • [30] Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought
    Zarei, Abdol Rassoul
    Mahmoudi, Mohammad Reza
    Moghimi, Mohammad Mehdi
    NATURAL HAZARDS, 2023, 115 (01) : 923 - 946