Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms

被引:0
|
作者
Veroni, Stefano [1 ]
Mueller, Markus [2 ,3 ]
Giudice, Giacomo [1 ]
机构
[1] PlanQC GmbH, Munchener Str 34, D-85748 Garching, Germany
[2] RWTH Achen Univ, Inst Quantum Informat, D-52056 Aachen, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst, Theoret Nanoelect, D-52425 Julich, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
COMPUTATION; CODES; GATES;
D O I
10.1103/PhysRevResearch.6.043253
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations. In quantum computing platforms supporting unconditional qubit resets, or a constant supply of fresh qubits, alternative schemes which do not require measurements are possible. In such schemes, the error correction is realized via crafted coherent quantum feedback. We propose implementations of small measurement-free QEC schemes, which are fault tolerant to circuit-level noise. These implementations are guided by several heuristics to achieve fault tolerance: redundant syndrome information is extracted, and additional single-shot flag qubits are used. By carefully designing the circuit, the additional overhead of these measurement-free schemes is moderate compared to their conventional measurement and feed-forward counterparts. We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Optimized Fault-Tolerant Adder Design Using Error Analysis
    Kumar, Sakali Raghavendra
    Balasubramanian, P.
    Reddy, Ramesh
    Veeramachaneni, Sreehari
    Mahammad, Noor Sk
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (06)
  • [42] Fault-tolerant error correction for quantum Hamming codes with only two ancillary qudits
    Li-Yun Zhao
    Xiu-Bo Chen
    Gang Xu
    Jing-Wen Zhang
    Yi-Xian Yang
    Quantum Information Processing, 22
  • [43] Fault-tolerant error correction for quantum Hamming codes with only two ancillary qudits
    Zhao, Li-Yun
    Chen, Xiu-Bo
    Xu, Gang
    Zhang, Jing-Wen
    Yang, Yi-Xian
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [44] Comment on "Conditional generation of error syndromes in fault-tolerant error correction"
    Oshima, Kazuto
    PHYSICAL REVIEW A, 2011, 84 (04)
  • [45] FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE
    Aharonov, Dorit
    Ben-Or, Michael
    SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1207 - 1282
  • [46] Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit
    Alicki, Robert
    Lidar, Daniel A.
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2006, 73 (05):
  • [47] Optimal correction of concatenated fault-tolerant quantum codes
    Evans, Z. W. E.
    Stephens, A. M.
    QUANTUM INFORMATION PROCESSING, 2012, 11 (06) : 1511 - 1521
  • [48] Correction to: Fault-Tolerant Quantum Private Comparison Protocol
    Min Xiao
    ChunAn Ma
    International Journal of Theoretical Physics, 2022, 61
  • [49] Optimal correction of concatenated fault-tolerant quantum codes
    Z. W. E. Evans
    A. M. Stephens
    Quantum Information Processing, 2012, 11 : 1511 - 1521
  • [50] An efficient method of error correction in fault-tolerant modular neurocomputers
    Chervyakov, N. I.
    Lyakhov, P. A.
    Babenko, M. G.
    Garyanina, A. I.
    Lavrinenko, I. N.
    Lavrinenko, A. V.
    Deryabin, M. A.
    NEUROCOMPUTING, 2016, 205 : 32 - 44