Enhanced cancer classification and critical feature visualization using Raman spectroscopy and convolutional neural networks

被引:0
|
作者
Xia, Jingjing [1 ]
Li, Juan
Wang, Xiaoting [1 ]
Li, Yuan [2 ]
Li, Jinyao [1 ]
机构
[1] Xinjiang Univ, Inst Mat Med, Coll Life Sci & Technol, Urumqi 830017, Peoples R China
[2] Xinjiang Mil Reg Chinese Peoples Liberat Army, Emergency Intens Care Unit, Dept Endocrinol, Gen Hosp, Urumqi 830000, Peoples R China
关键词
Raman spectroscopy; Convolutional neural network; Grad-CAM; Visualization; Biomarker;
D O I
10.1016/j.saa.2024.125242
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Cell misuse and cross-contamination pose a significant threat to the accuracy of cell research outcomes, often leading to the wasteful expenditure of time, manpower, and material resources. Consequently, the accurate identification of cell lines is paramount. However, traditional identification methods, which often involve staining and culturing procedures, are not only time-consuming but also laborious. This underscores the need for a novel approach that enables rapid and automated cell line identification, thereby enhancing research efficiency and accuracy. Raman spectroscopy, renowned for its label-free, rapid, and noninvasive nature, offers invaluable molecular insights into samples, making it a widely utilized technique in the biological field. In this study, the identification of one normal and five cancer cell lines was achieved using a sparrow search algorithm- convolutional neural networks (SSA-CNN), considering both the full spectra and fingerprint region perspectives. The SSA-CNN model demonstrated exceptional performance, not just in binary classification, but also in accurately distinguishing among six cell lines. It achieved the highest accuracy (around 95 %), and the lowest standard error (<= 3%), for both the full spectra and fingerprint region. Based on the highly accurate SSA-CNN model, proposed the application of gradient-weighted class activation mapping (Grad-CAM) to visualize the Raman feature peaks. Upon comparing the visualized Raman features with reported biomarkers, found that not only were common biomolecules such as glucose, proteins, and liquids visualized, but specific feature peaks also aligned with reported biomarkers. The aforementioned results clearly demonstrated that the proposed strategy not only classifies cancer cell lines with remarkable accuracy but also served as a valuable tool for the discovery of novel biomarkers.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Classification of Blood Cancer Images Using a Convolutional Neural Networks Ensemble
    Ma, Kaiqiang
    Sun, Lingling
    Wang, Yaqi
    Wang, Junchao
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [32] Breast Cancer Histopathological Image Classification using Convolutional Neural Networks
    Spanhol, Fabio Alexandre
    Oliveira, Luiz S.
    Petitjean, Caroline
    Heutte, Laurent
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2560 - 2567
  • [33] Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
    Brinker, Titus Josef
    Hekler, Achim
    Utikal, Jochen Sven
    Grabe, Niels
    Schadendorf, Dirk
    Klode, Joachim
    Berking, Carola
    Steeb, Theresa
    Enk, Alexander H.
    von Kalle, Christof
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (10)
  • [34] Skin Cancer Classification Using Different Backbones of Convolutional Neural Networks
    Huynh, Anh T.
    Van-Dung Hoang
    Vu, Sang
    Le, Trong T.
    Nguyen, Hien D.
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND PRACTICES IN ARTIFICIAL INTELLIGENCE, 2022, 13343 : 160 - 172
  • [35] Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC)
    Das, Dolly
    Biswas, Saroj Kumar
    Bandyopadhyay, Sivaji
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29943 - 30001
  • [36] Co-training of Feature Extraction and Classification using Partitioned Convolutional Neural Networks
    Tsai, Wei-Yu
    Choi, Jinhang
    Parija, Tulika
    Gomatam, Priyanka
    Das, Chita
    Sampson, John
    Narayanan, Vijaykrishnan
    PROCEEDINGS OF THE 2017 54TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2017,
  • [37] Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC)
    Dolly Das
    Saroj Kumar Biswas
    Sivaji Bandyopadhyay
    Multimedia Tools and Applications, 2023, 82 : 29943 - 30001
  • [38] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237
  • [39] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [40] Clothing Classification Using Convolutional Neural Networks
    Hodecker, Andrei
    Fernandes, Anita M. R.
    Steffens, Alisson
    Crocker, Paul
    Leithardt, Valderi R. Q.
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,