Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review

被引:202
|
作者
Brinker, Titus Josef [1 ,2 ]
Hekler, Achim [1 ]
Utikal, Jochen Sven [3 ,4 ]
Grabe, Niels [5 ]
Schadendorf, Dirk [6 ]
Klode, Joachim [6 ]
Berking, Carola [7 ]
Steeb, Theresa [7 ]
Enk, Alexander H. [2 ]
von Kalle, Christof [1 ]
机构
[1] German Canc Res Ctr, Dept Translat Oncol, Natl Ctr Tumor Dis, Neuenheimer Feld 460, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Univ Hosp Heidelberg, Dept Dermatol, Heidelberg, Germany
[3] German Canc Res Ctr, Skin Canc Unit, Heidelberg, Germany
[4] Ruprecht Karl Univ Heidelberg, Univ Med Ctr Mannheim, Dept Dermatol Venereol & Allergol, Heidelberg, Germany
[5] Heidelberg Univ, Bioquant Hamamatsu Tissue Imaging & Anal Ctr, Heidelberg, Germany
[6] Univ Duisburg Essen, Univ Hosp Essen, Dept Dermatol, Essen, Germany
[7] Ludwig Maximilian Univ Munich, Univ Hosp Munich, Dept Dermatol, Munich, Germany
关键词
skin cancer; convolutional neural networks; lesion classification; deep learning; melanoma classification; carcinoma classification; DIAGNOSIS; ACCURACY; MELANOMA;
D O I
10.2196/11936
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: State-of-the-art classifiers based on convolutional neural networks (CNNs) were shown to classify images of skin cancer on par with dermatologists and could enable lifesaving and fast diagnoses, even outside the hospital via installation of apps on mobile devices. To our knowledge, at present there is no review of the current work in this research area. Objective: This study presents the first systematic review of the state-of-the-art research on classifying skin lesions with CNNs. We limit our review to skin lesion classifiers. In particular, methods that apply a CNN only for segmentation or for the classification of dermoscopic patterns are not considered here. Furthermore, this study discusses why the comparability of the presented procedures is very difficult and which challenges must be addressed in the future. Methods: We searched the Google Scholar, PubMed, Medline, ScienceDirect, and Web of Science databases for systematic reviews and original research articles published in English. Only papers that reported sufficient scientific proceedings are included in this review. Results: We found 13 papers that classified skin lesions using CNNs. In principle, classification methods can be differentiated according to three principles. Approaches that use a CNN already trained by means of another large dataset and then optimize its parameters to the classification of skin lesions are the most common ones used and they display the best performance with the currently available limited datasets. Conclusions: CNNs display a high performance as state-of-the-art skin lesion classifiers. Unfortunately, it is difficult to compare different classification methods because some approaches use nonpublic datasets for training and/or testing, thereby making reproducibility difficult. Future publications should use publicly available benchmarks and fully disclose methods used for training to allow comparability.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
    Hoehn, Julia
    Hekler, Achim
    Krieghoff-Henning, Eva
    Kather, Jakob Nikolas
    Utikal, Jochen Sven
    Meier, Friedegund
    Gellrich, Frank Friedrich
    Hauschild, Axel
    French, Lars
    Schlager, Justin Gabriel
    Ghoreschi, Kamran
    Wilhelm, Tabea
    Kutzner, Heinz
    Heppt, Markus
    Haferkamp, Sebastian
    Sondermann, Wiebke
    Schadendorf, Dirk
    Schilling, Bastian
    Maron, Roman C.
    Schmitt, Max
    Jutzi, Tanja
    Froehling, Stefan
    Lipka, Daniel B.
    Brinker, Titus Josef
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (07)
  • [2] Skin cancer classification using Convolutional neural networks
    Subramanian, R. Raja
    Achuth, Dintakurthi
    Kumar, P. Shiridi
    Reddy, Kovvuru Naveen Kumar
    Amara, Srikar
    Chowdary, Adusumalli Suchan
    [J]. 2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 13 - 19
  • [3] Skin Cancer Classification Using Different Backbones of Convolutional Neural Networks
    Huynh, Anh T.
    Van-Dung Hoang
    Vu, Sang
    Le, Trong T.
    Nguyen, Hien D.
    [J]. ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND PRACTICES IN ARTIFICIAL INTELLIGENCE, 2022, 13343 : 160 - 172
  • [4] Skin Cancer Classification with Deep Convolutional Neural Networks
    Chen, Mingang
    Chen, Wenjie
    Chen, Wei
    Cai, Lizhi
    Chai, Gang
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (07) : 1707 - 1713
  • [5] Facial Skin Classification Using Convolutional Neural Networks
    Alarifi, Jhan S.
    Goyal, Manu
    Davison, Adrian K.
    Dancey, Darren
    Khan, Rabia
    Yap, Moi Hoon
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 479 - 485
  • [6] Classification of skin lesions using convolutional neural networks
    Bilginer, Onur
    Tunga, Burcu
    Demirer, Rustu Murat
    [J]. PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2022, 28 (02): : 208 - 214
  • [7] Classification of skin cancer using convolutional neural networks analysis of Raman spectra
    Bratchenko, Ivan A.
    Bratchenko, Lyudmila A.
    Khristoforova, Yulia A.
    Moryatov, Alexander A.
    V. Kozlo, Sergey
    Zakharo, Valery P.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 219
  • [8] Original Research Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts
    Haggenmueller, Sarah
    Maron, Roman C.
    Hekler, Achim
    Utikal, Jochen S.
    Barata, Catarina
    Barnhill, Raymond L.
    Beltraminelli, Helmut
    Berking, Carola
    Betz-Stablein, Brigid
    Blum, Andreas
    Braun, Stephan A.
    Carr, Richard
    Combalia, Marc
    Fernandez-Figueras, Maria-Teresa
    Ferrara, Gerardo
    Fraitag, Sylvie
    French, Lars E.
    Gellrich, Frank F.
    Ghoreschi, Kamran
    Goebeler, Matthias
    Guitera, Pascale
    Haenssle, Holger A.
    Haferkamp, Sebastian
    Heinzerling, Lucie
    V. Heppt, Markus
    Hilke, Franz J.
    Hobelsberger, Sarah
    Krahl, Dieter
    Kutzner, Heinz
    Lallas, Aimilios
    Liopyris, Konstantinos
    Llamas-Velasco, Mar
    Malvehy, Josep
    Meier, Friedegund
    Mueller, Cornelia S. L.
    Navarini, Alexander A.
    Navarrete-Dechent, Cristian
    Perasole, Antonio
    Poch, Gabriela
    Podlipnik, Sebastian
    Requena, Luis
    Rotemberg, Veronica M.
    Saggini, Andrea
    Sangueza, Omar P.
    Santonja, Carlos
    Schadendorf, Dirk
    Schilling, Bastian
    Schlaak, Max
    Schlager, Justin G.
    Sergon, Mildred
    [J]. EUROPEAN JOURNAL OF CANCER, 2021, 156 : 202 - 216
  • [9] Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks
    Maron, Roman C.
    Weichenthal, Michael
    Utikal, Jochen S.
    Hekler, Achim
    Berking, Carola
    Hauschild, Axel
    Enk, Alexander H.
    Haferkamp, Sebastian
    Klode, Joachim
    Schadendorf, Dirk
    Jansen, Philipp
    Holland-Letz, Tim
    Schilling, Bastian
    von Kalle, Christof
    Froehling, Stefan
    Gaiser, Maria R.
    Hartmann, Daniela
    Gesierich, Anja
    Kaehler, Katharina C.
    Wehkamp, Ulrike
    Karoglan, Ante
    Baer, Claudia
    Brinker, Titus J.
    Schmitt, Laurenz
    Peitsch, Wiebke K.
    Hoffmann, Friederike
    Becker, Juergen C.
    Drusio, Christina
    Jansen, Philipp
    Klode, Joachim
    Lodde, Georg
    Sammet, Stefanie
    Schadendorf, Dirk
    Sondermann, Wiebke
    Ugurel, Selma
    Zader, Jeannine
    Enk, Alexander
    Salzmann, Martin
    Schaefer, Sarah
    Schaekel, Knut
    Winkler, Julia
    Woelbing, Priscilla
    Asper, Hiba
    Bohne, Ann-Sophie
    Brown, Victoria
    Burba, Bianca
    Deffaa, Sophia
    Dietrich, Cecilia
    Dietrich, Matthias
    Drerup, Katharina Antonia
    [J]. EUROPEAN JOURNAL OF CANCER, 2019, 119 : 57 - 65
  • [10] Convolutional Neural Networks Using MobileNet for Skin Lesion Classification
    Sae-Lim, Wannipa
    Wettayaprasit, Wiphada
    Aiyarak, Pattara
    [J]. 2019 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2019), 2019, : 242 - 247