Multi-source fault data fusion diagnosis method based on hyper-feature space graph collaborative embedding

被引:1
|
作者
Dong, Xiaoxin [1 ]
Ding, Hua [1 ]
Gao, Dawei [2 ]
Zheng, Guangyu [1 ]
Wang, Jiaxuan [1 ]
Lang, Qifa [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mech Engn, Taiyuan 030024, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Multi-source data fusion; Hyper-feature space; Graph embedding;
D O I
10.1016/j.aei.2024.103092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rotating machinery fault diagnosis based on multi-source sensor monitoring presents high dimensionality, high sampling frequency, and nonlinearity problems, making it challenging to accurately and timely determine the true health status of the equipment. Moreover, existing methods, such as deep learning models, face issues like a large number of training parameters and limited interpretability, which hinder their application in engineering practice, especially in scenarios that require fast diagnostic performance and ease of deployment. To address this problem, a novel fault diagnosis framework based on hyper-feature space graph collaborative embedding (HFSGCE) is proposed in this paper to improve the health status identification efficiency. Firstly, the algorithm realizes the preservation of the near-neighbor structure of the data by establishing a hyper-feature space embedding graph model corresponding to different types of sensor data. Secondly, a fused hyper-Laplacian scatter matrix is established based on the graph structure model to achieve feature-level fusion of multisource data. Finally, the dimensionality-reduced multi-source monitoring data is fed into the classifier for pattern recognition. The algorithm was experimentally validated using two types of bearing fault simulation data from Paderborn University and our laboratory. The results demonstrate that the algorithm effectively eliminates redundant information from large volumes of low-value-density monitoring data, providing a new insight for rotating machinery fault diagnosis in the context of big data.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fault Diagnosis Method Based on Multi-Source Information Fusion
    Lei, Ming
    Liao, Dapeng
    Zhou, Chunsheng
    Ci, Wenbin
    Zhang, Hui
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 315 - 318
  • [2] A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV
    Xia, Shaoxuan
    Zhou, Xiaofeng
    Shi, Haibo
    Li, Shuai
    Xu, Chunhui
    OCEAN ENGINEERING, 2022, 266
  • [3] A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV
    Xia, Shaoxuan
    Zhou, Xiaofeng
    Shi, Haibo
    Li, Shuai
    Xu, Chunhui
    Ocean Engineering, 2022, 266
  • [4] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [5] Distribution Network Fault Diagnosis Technology Based on Multi-Source Data Fusion
    Zhang C.
    Xu X.
    Liu S.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (05): : 739 - 746
  • [6] Fault diagnosis method for machinery based on multi-source conflict information fusion
    Wei, Jianfeng
    Zhang, Faping
    Lu, Jiping
    Yang, Xiangfei
    Yan, Yan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [7] Bearing fault diagnosis method based on multi-source heterogeneous information fusion
    Zhang, Ke
    Gao, Tianhao
    Shi, Huaitao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (07)
  • [8] Research on Mechanical Fault Diagnosis Method of Circuit Breakers Based on Fusion of Multi-Source Signal Data
    Zhao, Xiaomin
    Lv, Simeng
    Guan, Xin
    Liu, Wenkui
    Wang, Haoyuan
    Li, Xiao
    Ma, Chaoyang
    Lu, Yaopeng
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 477 - 484
  • [9] Fault diagnosis of blast furnace based on incomplete multi-source domain adaptation with feature fusion
    Gao, Dali
    Yang, Chunjie
    Tang, Xiao-Yu
    Zhu, Xiongzhuo
    Huang, Xiaoke
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [10] Fault Diagnosis of Metal Oxide Surge Arresters Based on Multi-source Data Fusion
    Wei Dongliang
    Jiang Yiwen
    Peng Hao
    Xue Feng
    Li Haitao
    Xie Jianrong
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 3173 - 3179