Bearing fault diagnosis method based on multi-source heterogeneous information fusion

被引:27
|
作者
Zhang, Ke [1 ]
Gao, Tianhao [1 ]
Shi, Huaitao [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing fault diagnosis; multi-source fusion; pyramid of residuals; deep learning;
D O I
10.1088/1361-6501/ac5deb
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bearing fault diagnosis is a critical component of the mechanical equipment monitoring system. In the complex and harsh environment in which bearings operate, the fault diagnosis approach of multi-source information fusion can extract fault features more stably and extensively than the traditional single-source fault diagnosis method. However, most existing multi-source fusion methods are in infancy, and there are a number of pressing issues to address, such as subjective elements having a significant impact, excessive data redundancy, fuzzy multi-source signal fusion strategy, and insufficient accuracy. As a result, a new multi-source fusion fault diagnosis method is proposed in this paper. First, the residual pyramid algorithm is utilized to fuse the acoustic and vibration signals of multiple spatial positions respectively and then form two fused acoustic and vibration signals. Second, two improved 2D-CNN are used to extract the fault features contained in the above two signals separately to form a multi-source fault feature set. Third, an AdaBoost algorithm with a dynamic deletion mechanism is designed to fuse multi-source fault feature sets and produce the fault diagnosis findings. Finally, six different experimental data sets are used to test the performance of the model. The results reveal that the model has better generalization, higher and more stable fault diagnostic accuracy, and stronger anti-interference capacity.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Rolling Bearing Fault Diagnosis Based on Multi-source Information Fusion
    Zhu, Jing
    Deng, Aidong
    Xing, Lili
    Li, Ou
    [J]. JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (03) : 1470 - 1482
  • [2] Fault Diagnosis Method Based on Multi-Source Information Fusion
    Lei, Ming
    Liao, Dapeng
    Zhou, Chunsheng
    Ci, Wenbin
    Zhang, Hui
    [J]. INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 315 - 318
  • [3] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    [J]. FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [4] Fault diagnosis method for machinery based on multi-source conflict information fusion
    Wei, Jianfeng
    Zhang, Faping
    Lu, Jiping
    Yang, Xiangfei
    Yan, Yan
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [5] Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion
    Yan, Jihong
    Hu, Yuanyuan
    Guo, Chaozhong
    [J]. 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MATERIALS PROCESSING AND MANUFACTURING (SMPM 2019), 2019, 35 : 1184 - 1189
  • [6] Multi-Source Uncertain Information Fusion Method for Fault Diagnosis Based on Evidence Theory
    Mi, Jinhua
    Wang, Xinyuan
    Cheng, Yuhua
    Zhang, Songyi
    [J]. 2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [7] Grid Fault Diagnosis Based on Information Entropy and Multi-source Information Fusion
    Zeng, Xin
    Xiong, Xingzhong
    Luo, Zhongqiang
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, 67 (02) : 143 - 148
  • [8] Fault diagnosis using multi-source information fusion
    Fan, Xianfeng
    Zuo, Ming J.
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 275 - 280
  • [9] Multi-source heterogeneous information fusion fault diagnosis method based on deep neural networks under limited datasets
    Han, Dongying
    Zhang, Yu
    Yu, Yue
    Tian, Jinghui
    Shi, Peiming
    [J]. APPLIED SOFT COMPUTING, 2024, 154
  • [10] Fault Diagnosis of Brake Train based on Multi-Source Information Fusion
    Jin, Yongze
    Xie, Guo
    Hei, Xinhong
    Duan, Haitao
    Chen, Wenbin
    Ma, Jialin
    Zang, Qianbo
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2934 - 2938