Multi-source fault data fusion diagnosis method based on hyper-feature space graph collaborative embedding

被引:1
|
作者
Dong, Xiaoxin [1 ]
Ding, Hua [1 ]
Gao, Dawei [2 ]
Zheng, Guangyu [1 ]
Wang, Jiaxuan [1 ]
Lang, Qifa [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mech Engn, Taiyuan 030024, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Multi-source data fusion; Hyper-feature space; Graph embedding;
D O I
10.1016/j.aei.2024.103092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rotating machinery fault diagnosis based on multi-source sensor monitoring presents high dimensionality, high sampling frequency, and nonlinearity problems, making it challenging to accurately and timely determine the true health status of the equipment. Moreover, existing methods, such as deep learning models, face issues like a large number of training parameters and limited interpretability, which hinder their application in engineering practice, especially in scenarios that require fast diagnostic performance and ease of deployment. To address this problem, a novel fault diagnosis framework based on hyper-feature space graph collaborative embedding (HFSGCE) is proposed in this paper to improve the health status identification efficiency. Firstly, the algorithm realizes the preservation of the near-neighbor structure of the data by establishing a hyper-feature space embedding graph model corresponding to different types of sensor data. Secondly, a fused hyper-Laplacian scatter matrix is established based on the graph structure model to achieve feature-level fusion of multisource data. Finally, the dimensionality-reduced multi-source monitoring data is fed into the classifier for pattern recognition. The algorithm was experimentally validated using two types of bearing fault simulation data from Paderborn University and our laboratory. The results demonstrate that the algorithm effectively eliminates redundant information from large volumes of low-value-density monitoring data, providing a new insight for rotating machinery fault diagnosis in the context of big data.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Research on power grid fault diagnosis method based on multi-source heterogeneous data
    Chen, Hongzhong
    Wu, Qiang
    Yang, Xiao
    Xu, Lei
    Bu, Xinlian
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 329 - 334
  • [32] Fault Diagnosis Method for Main Pump Motor Shielding Sleeve Based on Attention Mechanism and Multi-Source Data Fusion
    Liu, Nengqing
    Xiang, Xuewei
    Li, Hui
    Chen, Zhi
    Jiang, Peng
    SENSORS, 2025, 25 (06)
  • [33] Experimental study of structural damage diagnosis method based on multi-source data fusion
    Liu, Tao
    Li, Ai-Qun
    Ding, You-Liang
    STRUCTURAL CONDITION ASSESSMENT, MONITORING AND IMPROVEMENT, VOLS 1 AND 2, 2007, : 612 - 616
  • [34] A Method for Building Model Reconstruction Based on Multi-source Feature Fusion
    Wen X.
    Chen W.
    Xie H.
    Yan L.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 731 - 736and764
  • [35] Fault diagnosis of hydraulic retraction system based on multi-source signals feature fusion and health assessment for the actuator
    Liu, Kuijian
    Feng, Yunwen
    Xue, Xiaofeng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3635 - 3649
  • [36] Fault diagnosis based on deep learning by extracting inherent common feature of multi-source heterogeneous data
    Zhou, Funa
    Yang, Shuai
    He, Yifan
    Chen, Danmin
    Wen, Chenglin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2021, 235 (10) : 1858 - 1872
  • [37] Multi-source Data Fusion Method Based on Difference Information
    Wang, Shu
    Ren, Yu
    Guan, Zhan-Xu
    Wang, Jing
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (09): : 1246 - 1253
  • [38] Reciprocating Compressor Fault Diagnosis Technology Based on Multi-source Information Fusion
    Zhang M.
    Jiang Z.
    Jiang, Zhinong (jiangzhinong@263.net), 1600, Chinese Mechanical Engineering Society (53): : 46 - 52
  • [39] Multi-layers fault diagnosis method based on multi-source information
    Zhao Qingqi
    Zhang Yaoyao
    Yang Yi
    2013 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2013, : 189 - 193
  • [40] Grid Fault Diagnosis Based on Information Entropy and Multi-source Information Fusion
    Zeng, Xin
    Xiong, Xingzhong
    Luo, Zhongqiang
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, 67 (02) : 143 - 148