Perdition of gully erosion susceptibility mapping using novel ensemble machine learning algorithms

被引:0
|
作者
机构
[1] Arabameri, Alireza
[2] Chandra Pal, Subodh
[3] 3,Costache, Romulus
[4] Saha, Asish
[5] 5,Rezaie, Fatemeh
[6] Seyed Danesh, Amir
[7] 8,9,10,Pradhan, Biswajeet
[8] 5,Lee, Saro
[9] Hoang, Nhat-Duc
来源
Lee, Saro | 1600年 / Taylor and Francis Ltd.卷 / 12期
关键词
Erosion - Potassium hydroxide - Adaptive boosting - Mapping - Land use - Learning systems - Machine learning - Geographic information systems - Landforms;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo
    Chuma, Geant Basimine
    Mugumaarhahama, Yannick
    Mond, Jean Mubalama
    Bagula, Espoir Mukengere
    Ndeko, Adrien Byamungu
    Lucungu, Prince Baraka
    Karume, Katcho
    Mushagalusa, Gustave Nachigera
    Schmitz, Serge
    PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 129
  • [32] Gully erosion susceptibility mapping considering seasonal variations of NDVI using a machine learning approach in the Mollisol region of China
    Gao, Ruilu
    Gao, Maofang
    Yao, Shuihong
    Wen, Yanru
    SOIL & TILLAGE RESEARCH, 2025, 245
  • [33] Evaluation of the gully erosion susceptibility by using UAV and hybrid models based on machine learning
    Wang, Qian
    Tang, Bohui
    Wang, Kailin
    Shi, Jiannan
    Li, Meiling
    SOIL & TILLAGE RESEARCH, 2024, 244
  • [34] Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya
    Were, Kennedy
    Kebeney, Syphyline
    Churu, Harrison
    Mutio, James Mumo
    Njoroge, Ruth
    Mugaa, Denis
    Alkamoi, Boniface
    Ng'etich, Wilson
    Singh, Bal Ram
    LAND, 2023, 12 (04)
  • [35] LAND SUBSIDENCE SUSCEPTIBILITY MAPPING USING MACHINE LEARNING ALGORITHMS
    Eghrari, Z.
    Delavar, M. R.
    Zare, M.
    Beitollahi, A.
    Nazari, B.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 129 - 136
  • [36] Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models
    Mosavi, Amirhosein
    Sajedi-Hosseini, Farzaneh
    Choubin, Bahram
    Taromideh, Fereshteh
    Rahi, Gholamreza
    Dineva, Adrienn A.
    WATER, 2020, 12 (07)
  • [37] Gully erosion susceptibility mapping using artificial intelligence and statistical models
    Razavi-Termeh, Seyed Vahid
    Sadeghi-Niaraki, Abolghasem
    Choi, Soo-Mi
    GEOMATICS NATURAL HAZARDS & RISK, 2020, 11 (01) : 821 - 845
  • [38] Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
    Amiri, Mandis
    Pourghasemi, Hamid Reza
    Ghanbarian, Gholam Abbas
    Afzali, Sayed Fakhreddin
    GEODERMA, 2019, 340 : 55 - 69
  • [39] Mapping Gully Erosion Variability and Susceptibility Using Remote Sensing, Multivariate Statistical Analysis, and Machine Learning in South Mato Grosso, Brazil
    Bouramtane, Tarik
    Hilal, Halima
    Rezende-Filho, Ary Tavares
    Bouramtane, Khalil
    Barbiero, Laurent
    Abraham, Shiny
    Valles, Vincent
    Kacimi, Ilias
    Sanhaji, Hajar
    Torres-Rondon, Laura
    de Castro, Domingos Dantas
    Vieira Santos, Janaina da Cunha
    Ouardi, Jamila
    El Beqqali, Omar
    Kassou, Nadia
    Morarech, Moad
    GEOSCIENCES, 2022, 12 (06)
  • [40] Determining of gully erosion susceptibility based on UAV and machine learning in Loess Plateau
    Wang, Ziguan
    Zeng, Rongchang
    Ma, Penglin
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)