Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya

被引:5
|
作者
Were, Kennedy [1 ]
Kebeney, Syphyline [2 ]
Churu, Harrison [2 ]
Mutio, James Mumo [2 ]
Njoroge, Ruth [2 ]
Mugaa, Denis [2 ]
Alkamoi, Boniface [2 ]
Ng'etich, Wilson [2 ]
Singh, Bal Ram [3 ]
机构
[1] Kenya Agr & Livestock Res Org, Kenya Soil Survey, POB 14733, Nairobi 00800, Kenya
[2] Univ Eldoret, Sch Agr & Biotechnol, POB 1125, Eldoret 30100, Kenya
[3] Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, POB 5003, N-1432 As, Norway
关键词
soil erosion; land degradation; sustainable land management; landscape restoration; spatial prediction; machine learning; LANDSLIDE SUSCEPTIBILITY; MODELS; REGRESSION; PERFORMANCE; LAND; TREE;
D O I
10.3390/land12040890
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aimed at (i) developing, evaluating and comparing the performance of support vector machines (SVM), boosted regression trees (BRT), random forest (RF) and logistic regression (LR) models in mapping gully erosion susceptibility, and (ii) determining the important gully erosion conditioning factors (GECFs) in a Kenyan semi-arid landscape. A total of 431 geo-referenced gully erosion points were gathered through a field survey and visual interpretation of high-resolution satellite imagery on Google Earth, while 24 raster-based GECFs were retrieved from the existing geodatabases for spatial modeling and prediction. The resultant models exhibited excellent performance, although the machine learners outperformed the benchmark LR technique. Specifically, the RF and BRT models returned the highest area under the receiver operating characteristic curve (AUC = 0.89 each) and overall accuracy (OA = 80.2%; 79.7%, respectively), followed by the SVM and LR models (AUC = 0.86; 0.85 & OA = 79.1%; 79.6%, respectively). In addition, the importance of the GECFs varied among the models. The best-performing RF model ranked the distance to a stream, drainage density and valley depth as the three most important GECFs in the region. The output gully erosion susceptibility maps can support the efficient allocation of resources for sustainable land management in the area.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran
    Lei, Xinxiang
    Chen, Wei
    Avand, Mohammadtaghi
    Janizadeh, Saeid
    Kariminejad, Narges
    Shahabi, Hejar
    Costache, Romulus
    Shahabi, Himan
    Shirzadi, Ataollah
    Mosavi, Amir
    [J]. REMOTE SENSING, 2020, 12 (15)
  • [2] Head-cut gully erosion susceptibility mapping in semi-arid region using machine learning methods: insight from the high atlas, Morocco
    Baiddah, Abdeslam
    Krimissa, Samira
    Hajji, Sonia
    Ismaili, Maryem
    Abdelrahman, Kamal
    El Bouzekraoui, Meryem
    Eloudi, Hasna
    Elaloui, Abdenbi
    Khouz, Abdellah
    Badreldin, Nasem
    Namous, Mustapha
    [J]. FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [3] Machine Learning Techniques for Gully Erosion Susceptibility Mapping: A Review
    Mohebzadeh, Hamid
    Biswas, Asim
    Rudra, Ramesh
    Daggupati, Prasad
    [J]. GEOSCIENCES, 2022, 12 (12)
  • [4] Proposing a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-arid Regions (Iran)
    Arabameri, Alireza
    Cerda, Artemi
    Rodrigo-Comino, Jesus
    Pradhan, Biswajeet
    Sohrabi, Masoud
    Blaschke, Thomas
    Dieu Tien Bui
    [J]. REMOTE SENSING, 2019, 11 (21)
  • [5] Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms
    Arabameri, Alireza
    Pal, Subodh Chandra
    Costache, Romulus
    Saha, Asish
    Rezaie, Fatemeh
    Danesh, Amir Seyed
    Pradhan, Biswajeet
    Lee, Saro
    Nhat-Duc Hoang
    [J]. GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 469 - 498
  • [6] Gully erosion susceptibility prediction in Mollisols using machine learning models
    Wang, Y.
    Zhang, Y.
    Chen, H.
    [J]. JOURNAL OF SOIL AND WATER CONSERVATION, 2023, 78 (05) : 385 - 396
  • [7] Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models
    Namous, Mustapha
    Hssaisoune, Mohammed
    Pradhan, Biswajeet
    Lee, Chang-Wook
    Alamri, Abdullah
    Elaloui, Abdenbi
    Edahbi, Mohamed
    Krimissa, Samira
    Eloudi, Hasna
    Ouayah, Mustapha
    Elhimer, Hicham
    Tagma, Tarik
    [J]. WATER, 2021, 13 (16)
  • [8] Comparison of machine learning models for gully erosion susceptibility mapping
    Alireza Arabameri
    Wei Chen
    Marco Loche
    Xia Zhao
    Yang Li
    Luigi Lombardo
    Artemi Cerda
    Biswajeet Pradhan
    Dieu Tien Bui
    [J]. Geoscience Frontiers, 2020, 11 (05) : 1609 - 1620
  • [9] Comparison of machine learning models for gully erosion susceptibility mapping
    Alireza Arabameri
    Wei Chen
    Marco Loche
    Xia Zhao
    Yang Li
    Luigi Lombardo
    Artemi Cerda
    Biswajeet Pradhan
    Dieu Tien Bui
    [J]. Geoscience Frontiers , 2020, (05) : 1609 - 1620
  • [10] Comparison of machine learning models for gully erosion susceptibility mapping
    Arabameri, Alireza
    Chen, Wei
    Loche, Marco
    Zhao, Xia
    Li, Yang
    Lombardo, Luigi
    Cerda, Artemi
    Pradhan, Biswajeet
    Dieu Tien Bui
    [J]. GEOSCIENCE FRONTIERS, 2020, 11 (05) : 1609 - 1620