Biomimetic surface design enables a resilient solid electrolyte interphase for high-performance anodes

被引:0
|
作者
Zhai, Yue [1 ,2 ,3 ,4 ]
Wei, Zhen [1 ,2 ,3 ,4 ]
He, Jiaxing [1 ,2 ,3 ,4 ,6 ]
Zhao, Ziyun [1 ,2 ,3 ,4 ]
Li, Qiang [1 ,2 ,3 ,4 ]
Jia, Yiran [1 ,2 ,3 ,4 ]
He, Qing [1 ,2 ,3 ]
Wu, Shichao [1 ,2 ,3 ,4 ]
Yang, Quan-Hong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tianjin Univ, Nanoyang Grp, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Natl Ind Educ Integrat Platform Energy Storage, Tianjin 300072, Peoples R China
[4] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[5] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[6] Zettwatt Energy Changzhou Technol Co Ltd, Liyang 213314, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid electrolyte interphase; conducting polymer; graphene; silicon-based anodes; lithium-ion batteries; HIGH-CAPACITY; LITHIUM STORAGE; SILICON; CARBON; SIOX; BINDER;
D O I
10.1016/j.ensm.2024.103871
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface coating presents an effective methodology for mitigating the detrimental effects of large volume changes inherent to high-capacity anode materials (e.g. Si, SiOx). However, designs often prioritize the protection of internal active particles, inadvertently neglecting the intricate interplay between the coating layer and the external electrolyte which exhibits profound influences on the solid electrolyte interphases (SEIs). Inspired by the extracellular polymeric substance (EPS) protecting biological cells (e.g. yeast) from predation and chemical damages, we prepare a conducting polymer-based EPS system (CP-EPS) on a surface bilayer comprising soft carbon membranes and compact graphene walls, constructing the biomimetic cellular structure. The CP-EPS chemically interacts with electrolyte catalyzing the symbiosis of integrated LiF-enriched SEIs and physically provide sufficient resilience for SEIs. This resilient SEIs offer excellent reaction kinetics and roughness which protects the structural integrity of the particle and itself from pulverization and excessive SEI thickening. The prepared SiOx anode delivers a superior average coulombic efficiency of 99.4 % over 200 cycles at 0.5C and a high reversible capacity of 730 mAh g-1 after 300 cycles at 2C.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Plasma Coupled Electrolyte Additive Strategy for Construction of High-Performance Solid Electrolyte Interphase on Li Metal Anodes
    Liu, Ping
    Shen, Shenghui
    Qiu, Zhong
    Yang, Tianqi
    Liu, Yaning
    Su, Han
    Zhang, Yongqi
    Li, Jingru
    Cao, Feng
    Zhong, Yu
    Liang, Xinqi
    Chen, Minghua
    He, Xinping
    Xia, Yang
    Wang, Chen
    Wan, Wangjun
    Tu, Jiangping
    Zhang, Wenkui
    Xia, Xinhui
    ADVANCED MATERIALS, 2024, 36 (30)
  • [2] Electrolyte Design Enabling Stable Solid Electrolyte Interface for High-Performance Silicon/Carbon Anodes
    Wen, Ziyue
    Wu, Feng
    Li, Li
    Chen, Nan
    Luo, Guangqiu
    Du, Jianguo
    Zhao, Liyuan
    Ma, Yue
    Li, Yuejiao
    Chen, Renjie
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (34) : 38807 - 38814
  • [3] Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites
    Chen, Si-Ming
    Wu, KaiJin
    Gao, Huai-Ling
    Sun, XiaoHao
    Zhang, Si-Chao
    Li, Xin-Yu
    Zhang, Zhen-Bang
    Wen, Shao-Meng
    Zhu, YinBo
    Wu, HengAn
    Ni, Yong
    Yu, Shu-Hong
    MATTER, 2022, 5 (05) : 1563 - 1577
  • [4] Electrolyte design for robust gradient solid-electrolyte interfaces to enable high-performance silicon anodes for pouch batteries
    He, Shenggong
    Huang, Shimin
    Liu, Xinzhou
    Zeng, Xianggang
    Chen, Hedong
    Zhao, Lingzhi
    Noor, Hadia
    Hou, Xianhua
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [5] Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
    Ji Chen
    Xiulin Fan
    Qin Li
    Hongbin Yang
    M. Reza Khoshi
    Yaobin Xu
    Sooyeon Hwang
    Long Chen
    Xiao Ji
    Chongyin Yang
    Huixin He
    Chongmin Wang
    Eric Garfunkel
    Dong Su
    Oleg Borodin
    Chunsheng Wang
    Nature Energy, 2020, 5 : 386 - 397
  • [6] Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes
    Jurng, Sunhyung
    Brown, Zachary L.
    Kim, Jiyeon
    Lucht, Brett L.
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) : 2600 - 2608
  • [7] Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries
    Zhao, Yan
    Zhou, Tianhong
    Jeurgens, Lars P. H.
    Kong, Xian
    Choi, Jang Wook
    Coskun, Ali
    CHEM, 2023, 9 (03): : 682 - 697
  • [8] Anchoring an Artificial Solid-Electrolyte Interphase Layer on a 3D Current Collector for High-Performance Lithium Anodes
    Li, Panlong
    Dong, Xiaoli
    Li, Chao
    Liu, Jingyuan
    Liu, Yao
    Feng, Wuliang
    Wang, Congxiao
    Wang, Yonggang
    Xia, Yongyao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (07) : 2093 - 2097
  • [9] Solid Electrolyte Interphase on Lithium Metal Anodes
    Shen, Zhichuan
    Huang, Junqiao
    Xie, Yu
    Wei, Dafeng
    Chen, Jinbiao
    Shi, Zhicong
    CHEMSUSCHEM, 2024, 17 (11)
  • [10] Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
    Chen, Ji
    Fan, Xiulin
    Li, Qin
    Yang, Hongbin
    Khoshi, M. Reza
    Xu, Yaobin
    Hwang, Sooyeon
    Chen, Long
    Ji, Xiao
    Yang, Chongyin
    He, Huixin
    Wang, Chongmin
    Garfunkel, Eric
    Su, Dong
    Borodin, Oleg
    Wang, Chunsheng
    NATURE ENERGY, 2020, 5 (05) : 386 - 397