Biomimetic surface design enables a resilient solid electrolyte interphase for high-performance anodes

被引:0
|
作者
Zhai, Yue [1 ,2 ,3 ,4 ]
Wei, Zhen [1 ,2 ,3 ,4 ]
He, Jiaxing [1 ,2 ,3 ,4 ,6 ]
Zhao, Ziyun [1 ,2 ,3 ,4 ]
Li, Qiang [1 ,2 ,3 ,4 ]
Jia, Yiran [1 ,2 ,3 ,4 ]
He, Qing [1 ,2 ,3 ]
Wu, Shichao [1 ,2 ,3 ,4 ]
Yang, Quan-Hong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tianjin Univ, Nanoyang Grp, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Natl Ind Educ Integrat Platform Energy Storage, Tianjin 300072, Peoples R China
[4] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[5] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[6] Zettwatt Energy Changzhou Technol Co Ltd, Liyang 213314, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid electrolyte interphase; conducting polymer; graphene; silicon-based anodes; lithium-ion batteries; HIGH-CAPACITY; LITHIUM STORAGE; SILICON; CARBON; SIOX; BINDER;
D O I
10.1016/j.ensm.2024.103871
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface coating presents an effective methodology for mitigating the detrimental effects of large volume changes inherent to high-capacity anode materials (e.g. Si, SiOx). However, designs often prioritize the protection of internal active particles, inadvertently neglecting the intricate interplay between the coating layer and the external electrolyte which exhibits profound influences on the solid electrolyte interphases (SEIs). Inspired by the extracellular polymeric substance (EPS) protecting biological cells (e.g. yeast) from predation and chemical damages, we prepare a conducting polymer-based EPS system (CP-EPS) on a surface bilayer comprising soft carbon membranes and compact graphene walls, constructing the biomimetic cellular structure. The CP-EPS chemically interacts with electrolyte catalyzing the symbiosis of integrated LiF-enriched SEIs and physically provide sufficient resilience for SEIs. This resilient SEIs offer excellent reaction kinetics and roughness which protects the structural integrity of the particle and itself from pulverization and excessive SEI thickening. The prepared SiOx anode delivers a superior average coulombic efficiency of 99.4 % over 200 cycles at 0.5C and a high reversible capacity of 730 mAh g-1 after 300 cycles at 2C.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] TEGDME Electrolyte Additive for High-performance Zinc Anodes
    Zhang, Weiguo
    Zhang, Chong
    Wang, Hongzhi
    Wang, Huanhuan
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2023, 39 (06) : 1037 - 1043
  • [22] Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase
    Cao, Zhang
    Zheng, Xueying
    Qu, Qunting
    Huang, Yunhui
    Zheng, Honghe
    ADVANCED MATERIALS, 2021, 33 (38)
  • [23] Synergy Between Weak Solvent and Solid Electrolyte Interphase Enables High-Rate and Temperature-Resilient Potassium Ion Batteries
    Wen, Jie
    Fu, Hongwei
    Gao, Caitian
    Zhou, Jiang
    Rao, Apparao M.
    Wen, Shuangchun
    Lu, Bingan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [24] Fast Ionic Conducting Hydroxyapatite Solid Electrolyte Interphase Enables Ultra-Stable Zinc Metal Anodes
    Han, Qizhen
    Cai, Lucheng
    Huang, Pengfei
    Liu, Shenwen
    He, Chaowei
    Xu, Zuojie
    Ying, Hangjun
    Han, Wei-Qiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (41) : 48316 - 48325
  • [25] Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes
    Peng Shi
    Ze-Yu Liu
    Xue-Qiang Zhang
    Xiang Chen
    Nan Yao
    Jin Xie
    Cheng-Bin Jin
    Ying-Xin Zhan
    Gang Ye
    Jia-Qi Huang
    Stephens Ifan E L
    Titirici Maria-Magdalena
    Qiang Zhang
    Journal of Energy Chemistry, 2022, 64 (01) : 172 - 178
  • [26] Solid-Electrolyte Interphase Chemistries Towards High-Performance Aqueous Zinc Metal Batteries
    Zhang, Wei
    He, Guanjie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (13)
  • [27] High-performance magnesium metal batteries via switching the passivation film into a solid electrolyte interphase
    Bae, Jiwoong
    Park, Hyoju
    Guo, Xuelin
    Zhang, Xiao
    Warner, Jamie H.
    Yu, Guihua
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) : 4391 - 4399
  • [28] In Situ Construction of Uniform and Elastic Solid-Electrolyte Interphase for High-Performance Potassium Batteries
    Gu, Mingyuan
    Fu, Hongwei
    Rao, Apparao M.
    Zhou, Jiang
    Lin, Yue
    Wen, Shuangchun
    Fan, Ling
    Lu, Bingan
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (46)
  • [29] In Situ Construction of Composite Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries
    Wang, Yan
    Ren, Longtao
    Liu, Jun
    Lu, Xiwen
    Wang, Qian
    Zhou, Mingyue
    Liu, Wen
    Sun, Xiaoming
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (45) : 50982 - 50991
  • [30] Solid-electrolyte interphase from nanowood for high-performance Li-metal batteries
    Li, Daohao
    Yang, Dongjiang
    MATTER, 2021, 4 (08) : 2632 - 2634