Multi-source fully test-time adaptation

被引:0
|
作者
Du, Yuntao [1 ]
Luo, Siqi [2 ]
Xin, Yi [2 ]
Chen, Mingcai [2 ]
Feng, Shuai [2 ]
Zhang, Mujie [2 ]
Wang, Chonngjun [2 ]
机构
[1] Beijing Inst Gen Artificial Intelligence BIGAI, Beijing, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Test-time adaptation; Domain adaptation; Transfer learning;
D O I
10.1016/j.neunet.2024.106661
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks have significantly advanced various fields. However, these models often encounter difficulties in achieving effective generalization when the distribution of test samples varies from that of the training samples. Recently, some fully test-time adaptation methods have been proposed to adapt the trained model with the unlabeled test samples before prediction to enhance the test performance. Despite achieving remarkable results, these methods only involve one trained model, which could only provide certain side information for the test samples. In real-world scenarios, there could be multiple available trained models that are beneficial to the test samples and are complementary to each other. Consequently, to better utilize these trained models, in this paper, we propose the problem of multi-source fully test-time adaptation to adapt multiple trained models to the test samples. To address this problem, we introduce a simple yet effective method utilizing a weighted aggregation scheme and introduce two unsupervised losses. The former could adaptively assign a higher weight to a more relevant model, while the latter could jointly adapt models with online unlabeled samples. Extensive experiments on three image classification datasets show that the proposed method achieves better results than baseline methods, demonstrating the superiority in adapting to multiple models.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Video Test-Time Adaptation for Action Recognition
    Lin, Wei
    Mirza, Muhammad Jehanzeb
    Kozinski, Mateusz
    Possegger, Horst
    Kuchne, Hilde
    Bischof, Horst
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22952 - 22961
  • [22] DomainAdaptor: A Novel Approach to Test-time Adaptation
    Zhang, Jian
    Qi, Lei
    Shi, Yinghuan
    Gao, Yang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18925 - 18935
  • [23] Unseen Object Instance Segmentation with Fully Test-time RGB-D Embeddings Adaptation
    Zhang, Lu
    Zhang, Siqi
    Yang, Xu
    Qiao, Hong
    Liu, Zhiyong
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4945 - 4952
  • [24] A survey of multi-source domain adaptation
    Sun, Shiliang
    Shi, Honglei
    Wu, Yuanbin
    INFORMATION FUSION, 2015, 24 : 84 - 92
  • [25] MULTI-STEP TEST-TIME ADAPTATION WITH ENTROPY MINIMIZATION AND PSEUDO-LABELING
    Kingetsu, Hiroaki
    Kobayashi, Kenichi
    Okawa, Yoshihiro
    Yokota, Yasuto
    Nakazawa, Katsuhito
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4153 - 4157
  • [26] Multi-Source Distilling Domain Adaptation
    Zhao, Sicheng
    Wang, Guangzhi
    Zhang, Shanghang
    Gu, Yang
    Li, Yaxian
    Song, Zhichao
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12975 - 12983
  • [27] BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION
    Sun, Shi-Liang
    Shi, Hong-Lei
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 24 - 28
  • [28] Multi-Source Survival Domain Adaptation
    Shaker, Ammar
    Lawrence, Carolin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9752 - 9762
  • [29] In Search of Lost Online Test-Time Adaptation: A Survey
    Wang, Zixin
    Luo, Yadan
    Zheng, Liang
    Chen, Zhuoxiao
    Wang, Sen
    Huang, Zi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1106 - 1139
  • [30] Navigating Continual Test-time Adaptation with Symbiosis Knowledge
    Yang, Xu
    Li, Mogi
    Yin, Jie
    Wei, Kun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 5326 - 5334