Performance modeling using Monte Carlo simulation

被引:0
|
作者
Srinivasan, Ram [1 ]
Cook, Jeanine [1 ]
Lubeck, Olaf [2 ]
机构
[1] New Mexico State University
[2] Los Alamos National Laboratory
关键词
Cache memory - Constraint theory - Error analysis - Mathematical models - Monte Carlo methods - Software architecture;
D O I
暂无
中图分类号
学科分类号
摘要
Cycle accurate simulation has long been the primary tool for micro-architecture design and evaluation. Though accurate, the slow speed often imposes constraints on the extent of design exploration. In this work, we propose a fast, accurate Monte-Carlo based model for predicting processor performance. We apply this technique to predict the CPI of in-order architectures and validate it against the Itanium-2. The Monte Carlo model uses micro-architecture independent application characteristics, and cache, branch predictor statistics to predict CPI with an average error of less than 7%. Since prediction is achieved in a few seconds, the model can be used for fast design space exploration that can efficiently cull the space for cycle-accurate simulations. Besides accurately predicting CPI, the model also breaks down CPI into various components, where each component quantifies the effect of a particular stall condition (branch mis-prediction, cache miss, etc.) on overall CPI. Such a CPI decomposition can help processor designers quickly identify and resolve critical performance bottlenecks.
引用
收藏
页码:38 / 41
相关论文
共 50 条
  • [21] Expected Performance of CALET by Monte Carlo Simulation
    Akaike, Y.
    Kasahara, K.
    Torii, S.
    Shimizu, Y.
    Taira, K.
    Yoshida, K.
    Watanabe, I.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 : 169 - 172
  • [22] MODELING FOR AN ALGAAS/GAAS HETEROSTRUCTURE DEVICE USING MONTE-CARLO SIMULATION
    TOMIZAWA, M
    YOSHII, A
    YOKOYAMA, K
    IEEE ELECTRON DEVICE LETTERS, 1985, 6 (07) : 332 - 334
  • [23] Monte Carlo Modeling and Simulation of the Varian TrueBeam LINAC Using Heterogeneous Computing
    Lin, H.
    Liu, T.
    Su, L.
    Shi, C.
    Tang, X.
    Adam, D.
    Bednarz, B.
    Xu, X.
    MEDICAL PHYSICS, 2017, 44 (06) : 3003 - 3003
  • [24] Modeling of Light Propagation in Turbid Medium Using Monte Carlo Simulation Technique
    Atif, M.
    Khan, A.
    Ikram, M.
    OPTICS AND SPECTROSCOPY, 2011, 111 (01) : 107 - 112
  • [25] Modeling of light propagation in turbid medium using Monte Carlo simulation technique
    M. Atif
    A. Khan
    M. Ikram
    Optics and Spectroscopy, 2011, 111 : 107 - 112
  • [26] Modeling of Unsteady Shock Tube Flows Using Direct Simulation Monte Carlo
    Zhu, Tong
    Li, Zheng
    Levin, Deborah A.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2014, 28 (04) : 623 - 634
  • [27] Modeling low-coherence enhanced backscattering using Monte Carlo simulation
    Subramanian, Hariharan
    Pradhan, Prabhakar
    Kim, Young L.
    Liu, Yang
    Li, Xu
    Backman, Vadim
    APPLIED OPTICS, 2006, 45 (24) : 6292 - 6300
  • [28] Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method
    MIT, Cambridge, United States
    J Fluids Eng Trans ASME, 3 (464-468):
  • [29] Modeling Unobserved Heterogeneity Using Latent Profile Analysis: A Monte Carlo Simulation
    Peugh, James
    Fan, Xitao
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (04) : 616 - 639
  • [30] Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method
    Piekos, ES
    Breuer, KS
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1996, 118 (03): : 464 - 469