Temporal spiking generative adversarial networks for heading direction decoding

被引:0
|
作者
Shen, Jiangrong [1 ,2 ,3 ]
Wang, Kejun [2 ,3 ]
Gao, Wei [4 ]
Liu, Jian K. [6 ]
Xu, Qi [7 ]
Pan, Gang [3 ]
Chen, Xiaodong [4 ,5 ]
Tang, Huajin [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian, Peoples R China
[2] Zhejiang Univ, State Key Lab Brain Machine Intelligence, Hangzhou, Peoples R China
[3] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[4] Hangzhou Normal Univ, Inst Brain Sci, Sch Basic Med Sci, Hangzhou, Peoples R China
[5] Zhejiang Univ, Interdisciplinary Inst Neurosci & Technol, Sch Med, Hangzhou, Peoples R China
[6] Univ Birmingham, Sch Comp Sci, Birmingham, England
[7] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
Spiking neural networks; Spiking generative adversarial networks; Heading direction decoding; INTELLIGENCE;
D O I
10.1016/j.neunet.2024.106975
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The spike-based neuronal responses within the ventral intraparietal area (VIP) exhibit intricate spatial and temporal dynamics in the posterior parietal cortex, presenting decoding challenges such as limited data availability at the biological population level. The practical difficulty in collecting VIP neuronal response data hinders the application of sophisticated decoding models. To address this challenge, we propose a unified spike-based decoding framework leveraging spiking neural networks (SNNs) for both generative and decoding purposes, for their energy efficiency and suitability for neural decoding tasks. We propose the Temporal Spiking Generative Adversarial Networks (T-SGAN), a model based on a spiking transformer, to generate synthetic time-series data reflecting the neuronal response of VIP neurons. T-SGAN incorporates temporal segmentation to reduce the temporal dimension length, while spatial self-attention facilitates the extraction of associated information among VIP neurons. This is followed by recurrent SNNs decoder equipped with an attention mechanism, designed to capture the intricate spatial and temporal dynamics for heading direction decoding. Experimental evaluations conducted on biological datasets from monkeys showcase the effectiveness of the proposed framework. Results indicate that T-SGAN successfully generates realistic synthetic data, leading to a significant improvement of up to 1.75% in decoding accuracy for recurrent SNNs. Furthermore, the SNN-based decoding framework capitalizes on the low power consumption advantages, offering substantial benefits for neuronal response decoding applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [22] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [23] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [24] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [25] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [26] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [27] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [28] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218
  • [29] Structured Generative Adversarial Networks
    Deng, Zhijie
    Zhang, Hao
    Liang, Xiaodan
    Yang, Luona
    Xu, Shizhen
    Zhu, Jun
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [30] Quantum generative adversarial networks
    Dallaire-Demers, Pierre-Luc
    Killoran, Nathan
    PHYSICAL REVIEW A, 2018, 98 (01)