CEDNet: A cascade encoder-decoder network for dense prediction

被引:3
|
作者
Zhang, Gang [1 ]
Li, Ziyi [2 ]
Tang, Chufeng [1 ]
Li, Jianmin [1 ]
Hu, Xiaolin [1 ,3 ]
机构
[1] Tsinghua Univ, Inst AI, McGovern Inst Brain Res, Tsinghua Lab Brain & Intelligence THBI,IDG,Bosch J, Beijing 100084, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[3] Chinese Inst Brain Res CIBR, Beijing 100010, Peoples R China
基金
中国国家自然科学基金;
关键词
Dense prediction; Object detection; Instance segmentation; Semantic segmentation; Cascade encoder-decoder; Multi-scale feature fusion;
D O I
10.1016/j.patcog.2024.111072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prevailing methods for dense prediction tasks typically utilize a heavy classification backbone to extract multi-scale features and then fuse these features using a lightweight module. However, these methods allocate most computational resources to the classification backbone, which delays the multi-scale feature fusion and potentially leads to inadequate feature fusion. Although some methods perform feature fusion from early stages, they either fail to fully leverage high-level features to guide low-level feature learning or have complex structures, resulting in sub-optimal performance. We propose a streamlined cascade encoder-decoder network, named CEDNet, tailored for dense prediction tasks. All stages in CEDNet share the same encoder-decoder structure and perform multi-scale feature fusion within each decoder, thereby enhancing the effectiveness of multi-scale feature fusion. We explored three well-known encoder-decoder structures: Hourglass, UNet, and FPN, all of which yielded promising results. Experiments on various dense prediction tasks demonstrated the effectiveness of our method.1
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Recurrent Encoder-Decoder Network for Sequential Face Alignment
    Peng, Xi
    Feris, Rogerio S.
    Wang, Xiaoyu
    Metaxas, Dimitris N.
    COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 38 - 56
  • [22] Encoder-Decoder based Neural Network for Perspective Estimation
    Wang, Yutong
    Zhang, Qi
    Kim, Joongkyu
    Li, Huifang
    IPMV 2021: PROCEEDINGS OF 2021 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MACHINE VISION (IPMV 2021), 2021, : 42 - 46
  • [23] RESIDUAL ENCODER-DECODER NETWORK FOR DEEP SUBSPACE CLUSTERING
    Yang, Shuai
    Zhu, Wenqi
    Zhu, Yuesheng
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2895 - 2899
  • [24] REDN: A Recursive Encoder-Decoder Network for Edge Detection
    Le, Truc
    Duan, Ye
    IEEE ACCESS, 2020, 8 : 90153 - 90164
  • [25] Auto Graph Encoder-Decoder for Neural Network Pruning
    Yu, Sixing
    Mazaheri, Arya
    Jannesari, Ali
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6342 - 6352
  • [26] Quantum recurrent encoder-decoder neural network for performance trend prediction of rotating machinery
    Chen, Yong
    Li, Feng
    Wang, Jiaxu
    Tang, Baoping
    Zhou, Xueming
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [27] A graph encoder-decoder network for unsupervised anomaly detection
    Mesgaran, Mahsa
    Ben Hamza, A.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (32): : 23521 - 23535
  • [28] Light field intrinsics with a deep encoder-decoder network
    Alperovich, Anna
    Johannsen, Ole
    Strecke, Michael
    Goldluecke, Bastian
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9145 - 9154
  • [29] Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design
    Kao, Chien-Ting
    Lin, Chieh-Te
    Chou, Cheng-Li
    Lin, Chu-Chung
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) : 2918 - 2927
  • [30] REDfold: accurate RNA secondary structure prediction using residual encoder-decoder network
    Chun-Chi Chen
    Yi-Ming Chan
    BMC Bioinformatics, 24