CEDNet: A cascade encoder-decoder network for dense prediction

被引:3
|
作者
Zhang, Gang [1 ]
Li, Ziyi [2 ]
Tang, Chufeng [1 ]
Li, Jianmin [1 ]
Hu, Xiaolin [1 ,3 ]
机构
[1] Tsinghua Univ, Inst AI, McGovern Inst Brain Res, Tsinghua Lab Brain & Intelligence THBI,IDG,Bosch J, Beijing 100084, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[3] Chinese Inst Brain Res CIBR, Beijing 100010, Peoples R China
基金
中国国家自然科学基金;
关键词
Dense prediction; Object detection; Instance segmentation; Semantic segmentation; Cascade encoder-decoder; Multi-scale feature fusion;
D O I
10.1016/j.patcog.2024.111072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prevailing methods for dense prediction tasks typically utilize a heavy classification backbone to extract multi-scale features and then fuse these features using a lightweight module. However, these methods allocate most computational resources to the classification backbone, which delays the multi-scale feature fusion and potentially leads to inadequate feature fusion. Although some methods perform feature fusion from early stages, they either fail to fully leverage high-level features to guide low-level feature learning or have complex structures, resulting in sub-optimal performance. We propose a streamlined cascade encoder-decoder network, named CEDNet, tailored for dense prediction tasks. All stages in CEDNet share the same encoder-decoder structure and perform multi-scale feature fusion within each decoder, thereby enhancing the effectiveness of multi-scale feature fusion. We explored three well-known encoder-decoder structures: Hourglass, UNet, and FPN, all of which yielded promising results. Experiments on various dense prediction tasks demonstrated the effectiveness of our method.1
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Encoder-decoder network with RMP for tongue segmentation
    Worapan Kusakunniran
    Punyanuch Borwarnginn
    Sarattha Karnjanapreechakorn
    Kittikhun Thongkanchorn
    Panrasee Ritthipravat
    Pimchanok Tuakta
    Paitoon Benjapornlert
    Medical & Biological Engineering & Computing, 2023, 61 : 1193 - 1207
  • [12] Laplacian encoder-decoder network for raindrop removal
    Zini, Simone
    Buzzelli, Marco
    PATTERN RECOGNITION LETTERS, 2022, 158 : 24 - 33
  • [13] Attention-Based Encoder-Decoder Network for Prediction of Electromagnetic Scattering Fields
    Zhang, Ying
    He, Mang
    2022 IEEE 10TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION, APCAP, 2022,
  • [14] Dense Encoder-Decoder–Based Architecture for Skin Lesion Segmentation
    Saqib Qamar
    Parvez Ahmad
    Linlin Shen
    Cognitive Computation, 2021, 13 : 583 - 594
  • [15] Using LSTM encoder-decoder for rhetorical structure prediction
    de Moura, Gustavo Bennemann
    Feltrim, Valeria Delisandra
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 278 - 283
  • [16] An Encoder-Decoder Architecture for the Prediction of Web Service QoS
    Smahi, Mohammed Ismail
    Hadjila, Fethellah
    Tibermacine, Chouki
    Merzoug, Mohammed
    Benamar, Abdelkrim
    SERVICE-ORIENTED AND CLOUD COMPUTING (ESOCC 2018), 2018, 11116 : 74 - 89
  • [17] Pavement Roughness Prediction Based on Encoder-decoder Structure
    Guo R.
    Yu X.
    Tongji Daxue Xuebao/Journal of Tongji University, 2023, 51 (08): : 1182 - 1190
  • [18] Unsupervised Encoder-Decoder Model for Anomaly Prediction Task
    Wu, Jinmeng
    Shu, Pengcheng
    Hong, Hanyu
    Li, Xingxun
    Ma, Lei
    Zhang, Yaozong
    Zhu, Ying
    Wang, Lei
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 549 - 561
  • [19] An Improved Encoder-Decoder Network for Ore Image Segmentation
    Yang, Hao
    Huang, Chao
    Wang, Long
    Luo, Xiong
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11469 - 11475
  • [20] Deep Hierarchical Encoder-Decoder Network for Image Captioning
    Xiao, Xinyu
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2942 - 2956