Industrial robot energy consumption model identification: A coupling model-driven and data-driven paradigm

被引:1
|
作者
Jiang, Pei [1 ]
Zheng, Jiajun [1 ]
Wang, Zuoxue [1 ]
Qin, Yan [2 ]
Li, Xiaobin [1 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Automat, Chongqing 400044, Peoples R China
关键词
Industrial robots; Energy consumption model; Dynamics identification; Deep reinforcement learning; Deep neural network; DESIGN; SYSTEM;
D O I
10.1016/j.eswa.2024.125604
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to wide distribution and low energy efficiency, the energy-saving in industrial robots (IRs) is attracting extensive attention. Accurate energy consumption (EC) models of IRs lay the foundation for energy-saving. However, most dynamic and electrical parameters of IRs are not disclosed by manufacturers, which leads to the invalidity of most model-based EC prediction methods. To bridge this gap, a mechanism-data hybrid- driven method is proposed to predict the EC of IRs in this paper. First, a joint torque prediction model integrating a hybrid-driven parameter identification is developed based on deep reinforcement learning (DRL). The framework for DRL-based parameter identification is constructed through tailored design of interfaces and training mechanisms, wherein the DRL agent can learn to identify the dynamic parameters from the trajectory database. And a deep neural network based on long short-term memory (LSTM) is proposed to predict the EC of IRs according to the joint torques and velocities. The nonlinear item, which is not modeled in the robot dynamic equation, are also encapsulated in the deep neural network with one-dimensional convolutional neural network (1D-CNN) layers to improve the prediction accuracy. To validate the accuracy and efficacy of the proposed method, experiments are conducted on a KUKA KR60-3 industrial robot with different loads. The results demonstrate that the proposed method can predict EC with a mean absolute percentage error of less than 2% under a fixed load and less than 3% under loads not used for agent training.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A study of health management of LWD tool based on data-driven and model-driven
    Li, Hui
    He, Zi-Hua
    Zhang, Yu-ting
    Feng, Jin
    Jian, Zun-Yi
    Jiang, Yi-Bo
    ACTA GEOPHYSICA, 2022, 70 (02) : 669 - 676
  • [22] Combining Data-Driven and Model-Driven Methods for Robust Facial Landmark Detection
    Zhang, Hongwen
    Li, Qi
    Sun, Zhenan
    Liu, Yunfan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (10) : 2409 - 2422
  • [23] A Hybrid Model-Driven and Data-Driven Approach for Saturation Correction of Current Transformer
    Zhang, Yubo
    Yang, Songhao
    Hao, Zhiguo
    Lin, Zexuan
    Liu, Zhiyuan
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [24] Synergy of Model-driven and Data-driven Approaches in a Dynamic Network Loading Problem
    Kurtc, Valentina
    Prokhorov, Andrey
    TRAFFIC AND GRANULAR FLOW 2022, TGF 2022, 2024, 443 : 487 - 494
  • [25] A data-driven method for optimizing the energy consumption of industrial robots
    Zhang, Mingyang
    Yan, Jihong
    JOURNAL OF CLEANER PRODUCTION, 2021, 285 (285)
  • [26] Model-Driven Data Migration
    Aboulsamh, Mohammed
    Crichton, Edward
    Davies, Jim
    Welch, James
    ADVANCES IN CONCEPTUAL MODELING: APPLICATIONS AND CHALLENGES, 2010, 6413 : 285 - 294
  • [27] Combing data-driven and model-driven methods for high proportion renewable energy distribution network reliability evaluation
    Zhang, Shuai
    Liu, Wenxia
    Wan, Haiyang
    Bai, Yaling
    Yang, Yuze
    Ma, Yingjie
    Lu, Yu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [28] Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application
    Cai, Qingsen
    Luo, XingQi
    Wang, Peng
    Gao, Chunyang
    Zhao, Peiyu
    APPLIED ENERGY, 2022, 305
  • [29] MD3Net: Integrating Model-Driven and Data-Driven Approaches for Pansharpening
    Yan, Yinsong
    Liu, Junmin
    Xu, Shuang
    Wang, Yicheng
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems
    Wang, Tianyu
    Noori, Mohammad
    Altabey, Wael A.
    Wu, Zhishen
    Ghiasi, Ramin
    Kuok, Sin-Chi
    Silik, Ahmed
    Farhan, Nabeel S. D.
    Sarhosis, Vasilis
    Farsangi, Ehsan Noroozinejad
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 204