Synergy of Model-driven and Data-driven Approaches in a Dynamic Network Loading Problem

被引:0
|
作者
Kurtc, Valentina [1 ,3 ]
Prokhorov, Andrey [2 ,3 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Polytech Skaya 29, St Petersburg 195251, Russia
[2] HSE Univ, Pokrovsky Bulvar 11, Moscow 109028, Russia
[3] Ltd Liabil Co A S Transproekt, Saperniy 5A, St Petersburg 191014, Russia
来源
关键词
Dynamic Network Loading; Stationary Road Sensor Data; Machine Learning;
D O I
10.1007/978-981-99-7976-9_60
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern dynamic models of traffic flow and especially dynamic network loading (DNL) models are a powerful approach to predict traffic flow dynamics in a short-term sense (minutes or hours ahead). Such models should be the core element of any intelligent transportation system to make safer and smarter use of transport networks. Nowadays a variety of traffic data is becoming more and more accurate and available. Online traffic data can be incorporated in DNL model to take into account nonrecurring events (e.g. accidents, road closures or unexpected bad weather conditions). This idea can increase the accuracy of short-term prediction and make traffic flow management more effective. In our research we suggest to combine traditional model-driven approach with a data-driven prediction. As a DNL model we use the link transmission model in cooperation with a dynamic user equilibrium algorithm to identify the routes. Traffic data are the values of speed and flow with a 5-minutes time step, obtained from stationary road sensors. We use the rolling horizon approach, that is, every 5-minutes model constructs 1-hour forecast incorporating actual sensor data. Moreover, we use methods of machine learning to predict the sensor data for the next hour and take it into account while calculating the forecast for the current hour ahead.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 50 条
  • [1] Data-driven network loading
    Tsanakas, N.
    Ekstrom, J.
    Gundlegard, D.
    Olstam, J.
    Rydergren, C.
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2021, 9 (01) : 237 - 265
  • [2] MD3Net: Integrating Model-Driven and Data-Driven Approaches for Pansharpening
    Yan, Yinsong
    Liu, Junmin
    Xu, Shuang
    Wang, Yicheng
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] A Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation
    van den Bergh, F.
    van Wyk, M. A.
    van Wyk, B. J.
    Udahemuka, G.
    SAIEE AFRICA RESEARCH JOURNAL, 2007, 98 (03): : 81 - 86
  • [4] Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid
    Ahangar, Parvaiz Ahmad
    Lone, Shameem Ahmad
    Gupta, Neeraj
    SUSTAINABILITY, 2023, 15 (16)
  • [5] Data-Driven vs Model-Driven Imitative Learning
    Tembine, Hamidou
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 22 - 29
  • [6] Data-Driven Hybrid Neural Network Under Model-Driven Supervised Learning for Structural Dynamic Impact Localization
    Luan, Yingxin
    Li, Teng
    Song, Ran
    Zhang, Wei
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 350 - 361
  • [7] Practical Dynamic Security Region Model: A Hybrid Physical Model-Driven and Data-Driven Approach
    Ren, Junzhi
    Zeng, Yuan
    Qin, Chao
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 728 - 739
  • [8] Hyperspectral Image Denoising: From Model-Driven, Data-Driven, to Model-Data-Driven
    Zhang, Qiang
    Zheng, Yaming
    Yuan, Qiangqiang
    Song, Meiping
    Yu, Haoyang
    Xiao, Yi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13143 - 13163
  • [9] The Interplay of AI and Digital Twin: Bridging the Gap between Data-Driven and Model-Driven Approaches
    Bariah, Lina
    Debbah, Merouane
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 219 - 225
  • [10] Model-Driven Feature Engineering for Data-Driven Battery SOH Model
    Alamin, Khaled
    Pagliari, Daniele Jahier
    Chen, Yukai
    Macii, Enrico
    Vinco, Sara
    Poncino, Massimo
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,