Pyteomics - A python framework for exploratory data analysis and rapid software prototyping in proteomics

被引:0
|
作者
机构
[1] [1,2,Goloborodko, Anton A.
[2] 2,Levitsky, Lev I.
[3] 2,Ivanov, Mark V.
[4] 2,Gorshkov, Mikhail V.
来源
Gorshkov, M.V. (gorshkov@chph.ras.ru) | 1600年 / Springer Science and Business Media, LLC卷 / 24期
关键词
Pyteomics is a cross-platform; open-source [!text type='Python']Python[!/text] library providing a rich set of tools for MS-based proteomics. It provides modules for reading LC-MS/MS data; search engine output; protein sequence databases; theoretical prediction of retention times; electrochemical properties of polypeptides; mass and m/z calculations; and sequence parsing. Pyteomics is available under Apache license; release versions are available at the [!text type='Python']Python[!/text] Package Index http://pypi.[!text type='python']python[!/text]. org/pyteomics; the source code repository at http://hg.theorchromo.ru/pyteomics; documentation at http://packages.[!text type='python']python[!/text].org/pyteomics. Pyteomics.biolccc documentation is available at http://packages.[!text type='python']python[!/text].org/pyteomics.biolccc/. Questions on installation and usage can be addressed to pyteomics mailing list: pyteomics@googlegroups.com [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [1] Pyteomics-a Python']Python Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics
    Goloborodko, Anton A.
    Levitsky, Lev I.
    Ivanov, Mark V.
    Gorshkov, Mikhail V.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2013, 24 (02) : 301 - 304
  • [2] Pyteomics 4.0: Five Years of Development of a Python']Python Proteomics Framework
    Levitsky, Lev I.
    Klein, Joshua A.
    Ivanov, Mark V.
    Gorshkov, Mikhail V.
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 709 - 714
  • [3] Python for rapid science operations analysis, prototyping and planning for BepiColombo
    2016, American Institute of Aeronautics and Astronautics Inc, AIAA
  • [4] eMZed: an open source framework in Python']Python for rapid and interactive development of LC/MS data analysis workflows
    Kiefer, Patrick
    Schmitt, Uwe
    Vorholt, Julia A.
    BIOINFORMATICS, 2013, 29 (07) : 963 - 964
  • [5] SIMA: Python']Python software for analysis of dynamic fluorescence imaging data
    Kaifosh, Patrick
    Zaremba, Jeffrey D.
    Danielson, Nathan B.
    Losonczy, Attila
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [6] PaDuA: A Python']Python Library for High-Throughput (Phospho)proteomics Data Analysis
    Ressa, Anna
    Fitzpatrick, Martin
    van den Toorn, Henk
    Heck, Albert J. R.
    Altelaar, Maarten
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 576 - 584
  • [7] A software framework for rapid prototyping of run-time systems for mobile calculi
    Bettini, Lorenzo
    De Nicola, Rocco
    Falassi, Daniele
    Lacoste, Marc
    Lopes, Luís
    Oliveira, Licínio
    Paulino, Hervé
    Vasconcelos, Vasco T.
    Lect. Notes Comput. Sci., 1600, (179-208):
  • [8] pyerrors: A python']python framework for error analysis of Monte Carlo data
    Joswig, Fabian
    Kuberski, Simon
    Kuhlmann, Justus T.
    Neuendorf, Jan
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 288
  • [9] A software framework for rapid prototyping of run-time systems for mobile calculi
    Bettini, L
    De Nicola, R
    Falassi, D
    Lacoste, M
    Lopes, L
    Oliveira, L
    Paulino, H
    Vasconcelos, VT
    GLOBAL COMPUTING, 2005, 3267 : 179 - 207
  • [10] Software framework for comparison of quantitative proteomics and DNA microarray data
    Ivakhno, S.
    Kornelyuk, A.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S23 - S23