Multiple periodic solutions in Liénard oscillator with delayed position feedbacks

被引:0
|
作者
Shang, Huilin [1 ]
Xu, Jian [1 ]
机构
[1] School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:962 / 966
相关论文
共 50 条
  • [41] Non-degeneracy and Uniqueness of Periodic Solutions for a Liénard Equation with a Linear Difference Operator
    Cheng, Zhibo
    Li, Yafei
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [43] A criterion of the non-existence of periodic solutions for a generalized Liénard system and its applications
    Jin Z.
    Lan X.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (1) : 15 - 20
  • [44] Bifurcation and Chaos Control of Mixed Rayleigh-LiéNard Oscillator With Two Periodic Excitations and Mixed Delays
    Zhao, Hongzhen
    Li, Jing
    Zhu, Shaotao
    Zhang, Yufeng
    Sun, Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5586 - 5601
  • [45] Limit periodic sets in polynomial liénard equations
    Luca S.
    Dumortier F.
    Qualitative Theory of Dynamical Systems, 2009, 7 (2) : 339 - 366
  • [46] Analytical threshold for chaos in a Duffing oscillator with delayed feedbacks
    Shen, Yong-Jun
    Wen, Shao-Fang
    Yang, Shao-Pu
    Guo, Shu-Qi
    Li, Lin-Ru
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 98 : 173 - 179
  • [47] Nondegeneracy and Uniqueness of Periodic Solution for a Liénard Equation
    Shaowen Yao
    Wenjie Li
    Zhibo Cheng
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [48] Continuability of Solutions for A Generalized Liénard System
    HUANG Li hong DAI Bin xiang HU Si hu Dept of Applied MathematicsHunan UnivChangsha China
    湖南大学学报(自然科学版), 1999, (06) : 1 - 8
  • [49] Vibration of the Liénard Oscillator with Quadratic Damping and Constant Excitation
    Cveticanin, Livija
    Herisanu, Nicolae
    Ismail, Gamal Mohamed
    Zukovic, Miodrag
    MATHEMATICS, 2025, 13 (06)
  • [50] Complex bursting dynamics in a Rayleigh-Liénard oscillator
    Wang, Haolan
    Qian, Youhua
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7679 - 7693