Limit periodic sets in polynomial liénard equations

被引:0
|
作者
Luca S. [1 ]
Dumortier F. [1 ]
机构
[1] Hasselt University, B-3590 Diepenbeek, Campus Diepenbeek, Agoralaan-Gebouw D
关键词
Liénard equation; Limit periodic set; Period annulus; Singularities;
D O I
10.1007/s12346-008-0019-9
中图分类号
学科分类号
摘要
In this paper we classify all limit periodic sets, as well bounded as unbounded ones, that occur in Liénard equations ẋ = y, ẏ = P(x) + yQ(x), with P and Q polynomials of respective degrees m and n with mn ≥ 1. We also classify the interior and exterior boundaries of the period annuli of such systems with special attention to the exterior boundary of the Hopf centers. We investigate under which conditions on (m, n) certain configurations can occur. © 2008 Birkhäuser Verlag Basel/Switzerland.
引用
收藏
页码:339 / 366
页数:27
相关论文
共 50 条
  • [1] Limit Cycles of a Class of Generalized Li,nard Polynomial Equations
    Llibre, J.
    Makhlouf, A.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2015, 21 (02) : 189 - 192
  • [2] Limit Cycles of a Class of Generalized Liénard Polynomial Equations
    J. Llibre
    A. Makhlouf
    [J]. Journal of Dynamical and Control Systems, 2015, 21 : 189 - 192
  • [3] Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations
    Jaume Llibre
    Marco Antonio Teixeira
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 51 - 66
  • [4] Limit cycles for m-piecewise discontinuous polynomial Li,nard differential equations
    Llibre, Jaume
    Teixeira, Marco Antonio
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 51 - 66
  • [5] Note on limit cycles for m-piecewise discontinuous polynomial Liénard differential equations
    Guangfeng Dong
    Changjian Liu
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [6] LIMIT CYCLES OF THE GENERALIZED POLYNOMIAL LINARD DIFFERENTIAL SYSTEMS
    Amel Boulfoul
    Amar Makhlouf
    [J]. Annals of Applied Mathematics, 2016, 32 (03) : 221 - 233
  • [7] Limit Cycles of a Class of Cubic Liénard Equations
    Huatao Jin
    Shuliang Shui
    [J]. Qualitative Theory of Dynamical Systems, 2011, 10 : 317 - 326
  • [8] Fixed and moving limit cycles for Liénard equations
    Armengol Gasull
    Marco Sabatini
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1985 - 2006
  • [9] Hilbert’s Sixteenth Problem for Polynomial Liénard Equations
    Magdalena Caubergh
    [J]. Qualitative Theory of Dynamical Systems, 2012, 11 : 3 - 18
  • [10] Small-amplitude limit cycles of polynomial Linard systems
    HAN MaoAn
    TIAN Yun
    YU Pei
    [J]. Science China Mathematics, 2013, 56 (08) : 1546 - 1559