Modelling multivariate spatio-temporal data with identifiable variational autoencoders

被引:0
|
作者
机构
[1] Sipilä, Mika
[2] Cappello, Claudia
[3] De Iaco, Sandra
[4] Nordhausen, Klaus
[5] Taskinen, Sara
关键词
Blind source separation;
D O I
10.1016/j.neunet.2024.106774
中图分类号
学科分类号
摘要
Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unknown linear or nonlinear unmixing transformation based on the observed data only. In this paper, we extend recently introduced identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method. © 2024 The Authors
引用
下载
收藏
相关论文
共 50 条
  • [1] Modelling spatio-temporal environmental data
    Rasinmäki, J
    ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [2] GeoAnalytics -: Exploring spatio-temporal and multivariate data
    Jern, Mikael
    Franzen, Johan
    INFORMATION VISUALIZATION-BOOK, 2006, : 25 - +
  • [3] Data-driven spatio-temporal modelling of glioblastoma
    Jorgensen, Andreas Christ Solvsten
    Hill, Ciaran Scott
    Sturrock, Marc
    Tang, Wenhao
    Karamched, Saketh R.
    Gorup, Dunja
    Lythgoe, Mark F.
    Parrinello, Simona
    Marguerat, Samuel
    Shahrezaei, Vahid
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):
  • [4] SPATIO-TEMPORAL MODELLING FOR NONSTATIONARY POINT REFERENCED DATA
    Morris, Lindsay
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (03) : 518 - 519
  • [5] Urban land use data spatio-temporal modelling
    Serra, P
    GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 779 - 788
  • [6] An interchangeable approach for modelling spatio-temporal count data
    Chiogna, Monica
    Gaetan, Carlo
    ENVIRONMETRICS, 2010, 21 (7-8) : 844 - 862
  • [7] Spatio-Temporal Variational Gaussian Processes
    Hamelijnck, Oliver
    Wilkinson, William J.
    Loppi, Niki A.
    Solin, Arno
    Damoulas, Theodoros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [8] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [9] Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality
    Tzala, Evangelia
    Best, Nicky
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2008, 17 (01) : 97 - 118
  • [10] Hyperparameter Tuning to Optimize Implementations of Denoising Autoencoders for Imputation of Missing Spatio-temporal Data
    Siddiqi, Muhammad Danial
    Jiang, Boyuan
    Asadi, Reza
    Regan, Amelia
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 107 - 114