Modelling multivariate spatio-temporal data with identifiable variational autoencoders

被引:0
|
作者
机构
[1] Sipilä, Mika
[2] Cappello, Claudia
[3] De Iaco, Sandra
[4] Nordhausen, Klaus
[5] Taskinen, Sara
关键词
Blind source separation;
D O I
10.1016/j.neunet.2024.106774
中图分类号
学科分类号
摘要
Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unknown linear or nonlinear unmixing transformation based on the observed data only. In this paper, we extend recently introduced identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [41] A simple taxonomy for describing the spatio-temporal structure of environmental modelling data
    Harpham, Q. K.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 133
  • [42] Modelling spatio-temporal data: A new variogram and covariance structure proposal
    Porcu, E.
    Mateu, J.
    Zini, A.
    Pini, R.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (01) : 83 - 89
  • [43] KD-STR: A Method for Spatio-Temporal Data Reduction and Modelling
    Steadman, Liam
    Griffiths, Nathan
    Jarvis, Stephen
    Bell, Mark
    Helman, Shaun
    Wallbank, Caroline
    1600, Association for Computing Machinery (02):
  • [44] Prototype-Based Spatio-Temporal Probabilistic Modelling of fMRI Data
    Alowadi, Nahed
    Shen, Yuan
    Tino, Peter
    ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, WSOM 2016, 2016, 428 : 193 - 203
  • [45] Deep generation network for multivariate spatio-temporal data based on separated attention
    Wang, Junkai
    Lin, Lianlei
    Gao, Sheng
    Zhang, Zongwei
    INFORMATION SCIENCES, 2023, 633 : 85 - 103
  • [46] A HIERARCHICAL MULTIVARIATE SPATIO-TEMPORAL MODEL FOR CLUSTERED CLIMATE DATA WITH ANNUAL CYCLES
    Mastrantonio, Gianluca
    Lasinio, Giovanna Jona
    Pollice, Alessio
    Capotorti, Giulia
    Teodonio, Lorenzo
    Genova, Giulio
    Blasi, Carlo
    ANNALS OF APPLIED STATISTICS, 2019, 13 (02): : 797 - 823
  • [47] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [48] CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data
    Lasinio, Giovanna Jona
    Santoro, Mario
    Mastrantonio, Gianluca
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1315 - 1345
  • [49] Indexing Multivariate Mobile Data through Spatio-Temporal Event Detection and Clustering
    Rawassizadeh, Reza
    Dobbins, Chelsea
    Akbari, Mohammad
    Pazzani, Michael
    SENSORS, 2019, 19 (03)
  • [50] Correction: Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhiguang Zhou
    Huihui Li
    Fang Liu
    Yanan Liu
    Chaogeng Huang
    Yubo Tao
    Hai Lin
    Weihua Su
    Journal of Visualization, 2023, 26 : 1207 - 1209