LOCAL JACQUET–LANGLANDS CORRESPONDENCE FOR REGULAR SUPERCUSPIDAL REPRESENTATIONS

被引:0
|
作者
Tokimoto, Kazuki [1 ]
机构
[1] Institute of Mathematics, Academia Sinica, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei,10617, Taiwan
来源
arXiv | 2023年
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
'spice' - General linear group
引用
收藏
相关论文
共 50 条
  • [21] Local theta correspondence of tempered representations and Langlands parameters
    Atobe, Hiraku
    Gan, Wee Teck
    INVENTIONES MATHEMATICAE, 2017, 210 (02) : 341 - 415
  • [22] Towards an explicit local Jacquet-Langlands correspondence beyond the cuspidal case
    Secherre, Vincent
    Stevens, Shaun
    COMPOSITIO MATHEMATICA, 2019, 155 (10) : 1853 - 1887
  • [23] Local theta correspondence of tempered representations and Langlands parameters
    Hiraku Atobe
    Wee Teck Gan
    Inventiones mathematicae, 2017, 210 : 341 - 415
  • [24] On the local Langlands correspondence for non-tempered representations
    Aubert, Anne-Marie
    Baum, Paul
    Plymen, Roger
    Solleveld, Maarten
    MUENSTER JOURNAL OF MATHEMATICS, 2014, 7 (01): : 27 - 50
  • [25] Distinguished regular supercuspidal representations
    Chong Zhang
    Mathematische Annalen, 2020, 376 : 1561 - 1598
  • [26] A REMARK ON JACQUET-LANGLANDS CORRESPONDENCE AND INVARIANT s
    Kariyama, Kazutoshi
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (01) : 25 - 33
  • [27] The Jacquet-Langlands Correspondence via Twisted Descent
    Jiang, Dihua
    Liu, Baiying
    Xu, Bin
    Zhang, Lei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (18) : 5455 - 5492
  • [28] Explicit local Jacquet-Langlands correspondence: The non-dyadic wild case
    Bushnell, Colin J.
    Henniart, Guy
    REPRESENTATIONS OF REDUCTIVE GROUPS, 2019, 101 : 45 - 72
  • [29] A geometric Jacquet–Langlands correspondence for paramodular Siegel threefolds
    Pol van Hoften
    Mathematische Zeitschrift, 2021, 299 : 2029 - 2061
  • [30] Distinguished regular supercuspidal representations
    Zhang, Chong
    MATHEMATISCHE ANNALEN, 2020, 376 (3-4) : 1561 - 1598