A geometric Jacquet–Langlands correspondence for paramodular Siegel threefolds

被引:0
|
作者
Pol van Hoften
机构
[1] King’s College London,
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Shimura varieties; Siegel modular forms; Weight-monodromy;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Picard–Lefschetz formula for Siegel modular threefolds of paramodular level and prove the weight-monodromy conjecture for its middle degree inner cohomology. We give some applications to the Langlands programme: using Rapoport-Zink uniformisation of the supersingular locus of the special fiber, we construct a geometric Jacquet–Langlands correspondence between GSp4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {GSp}}_4$$\end{document} and a definite inner form, proving a conjecture of Ibukiyama. We also prove an integral version of the weight-monodromy conjecture and use it to deduce a level lowering result for cohomological cuspidal automorphic representations of GSp4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {GSp}}_4$$\end{document}.
引用
收藏
页码:2029 / 2061
页数:32
相关论文
共 50 条