Accelerated Zymonic Acid Formation from Pyruvic Acid at the Interface of Aqueous Nanodroplets

被引:1
|
作者
Kim, Pyeongeun [1 ]
Reynolds, Ryan S. [1 ,2 ]
Deal, Alexandra M. [1 ]
Vaida, Veronica [3 ,4 ]
Ahmed, Musahid [1 ]
Wilson, Kevin R. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[4] Univ Colorado, CIRES, Boulder, CO 80309 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 44期
关键词
HENRYS LAW CONSTANTS; AIR-WATER-INTERFACE; HETEROGENEOUS OXIDATION; AEROSOL-PARTICLES; SURFACE; PHOTOCHEMISTRY; CHEMISTRY; PH; SPECTROSCOPY; DYNAMICS;
D O I
10.1021/acs.jpclett.4c02736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To explore the role of the liquid interface in mediating reactivity in small compartments, the formation kinetics of zymonic acid (ZA) is measured in submicron aerosols (average radius = 240 nm) using mass spectrometry. The formation of ZA, from a condensation reaction of two pyruvic acid (PA) molecules, proceeds over days in bulk solutions, while in submicron aerosols, it occurs in minutes. The experimental results are replicated in a kinetic model using an apparent interfacial reaction rate coefficient of k rxn = (0.9 +/- 0.2) x 10-3 M -1 s -1. The simulation reveals that surface activity of PA coupled with an enhanced interfacial reaction rate drives accelerated ZA formation in aerosols. Experimental and simulated results provide compelling evidence that the condensation reaction of PA occurs exclusively at the aerosol interface with a reaction rate coefficient that is enhanced by 4 orders of magnitude (similar to 104) relative to what is estimated for macroscale solutions.
引用
收藏
页码:11131 / 11138
页数:8
相关论文
共 50 条
  • [31] Photogeneration of distant radical pairs in aqueous pyruvic acid glasses
    Guzmán, MI
    Colussi, AJ
    Hoffmann, MR
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (03): : 931 - 935
  • [32] The formation of pyruvic acid following glucose ingestion in man
    Bueding, E
    Stein, MH
    Wortis, H
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1941, 137 (02) : 793 - 794
  • [33] Biochemical synthesis of fumaric acid from pyruvic acid.
    Gottschalk, A
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1926, 152 (1/3): : 136 - 143
  • [34] Effect of insulin on pyruvic acid formation in depancreatized dogs
    Bueding, E
    Fazekas, JF
    Herrlich, H
    Himwich, HE
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1943, 148 (01) : 97 - 104
  • [35] INVESTIGATION ON LEAD[2] COMPLEXES WITH PYRUVIC ACID IN AQUEOUS SOLUTIONS
    LENARCIK, B
    WARNKE, Z
    ROCZNIKI CHEMII, 1969, 43 (7-8): : 1329 - &
  • [36] Photochemistry of the iron(III) complex with pyruvic acid in aqueous solutions
    Zhang, X.
    Gong, Y.
    Wu, F.
    Deng, N.
    Pozdnyakov, I. P.
    Glebov, E. M.
    Grivin, V. P.
    Plyusnin, V. F.
    Bazhin, N. M.
    RUSSIAN CHEMICAL BULLETIN, 2009, 58 (09) : 1828 - 1836
  • [37] Formation and recovery of itaconic acid from aqueous solutions of citraconic acid and succinic acid
    Hogle, BP
    Shekhawat, D
    Nagarajan, K
    Jackson, JE
    Miller, DJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (09) : 2069 - 2073
  • [38] Palmitic acid dimer formation in the monolayers at the air/aqueous solution interface
    Brzozowska, I
    Figaszewski, ZA
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 30 (03) : 187 - 192
  • [39] Kinetics and mechanism of electron-transfer reactions : Oxidation of pyruvic acid by peroxomonosulphuric acid in acid aqueous medium
    Sharma, Neetu
    Singh, G.
    Khandelwal, C. L.
    Sharma, P. D.
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2007, 84 (09) : 897 - 901
  • [40] Recovery of pyruvic acid from biotransformation solutions
    C. Q. Ma
    J. C. Li
    J. H. Qiu
    M. Wang
    P. Xu
    Applied Microbiology and Biotechnology, 2006, 70 : 308 - 314