Accelerated Zymonic Acid Formation from Pyruvic Acid at the Interface of Aqueous Nanodroplets

被引:1
|
作者
Kim, Pyeongeun [1 ]
Reynolds, Ryan S. [1 ,2 ]
Deal, Alexandra M. [1 ]
Vaida, Veronica [3 ,4 ]
Ahmed, Musahid [1 ]
Wilson, Kevin R. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[4] Univ Colorado, CIRES, Boulder, CO 80309 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 44期
关键词
HENRYS LAW CONSTANTS; AIR-WATER-INTERFACE; HETEROGENEOUS OXIDATION; AEROSOL-PARTICLES; SURFACE; PHOTOCHEMISTRY; CHEMISTRY; PH; SPECTROSCOPY; DYNAMICS;
D O I
10.1021/acs.jpclett.4c02736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To explore the role of the liquid interface in mediating reactivity in small compartments, the formation kinetics of zymonic acid (ZA) is measured in submicron aerosols (average radius = 240 nm) using mass spectrometry. The formation of ZA, from a condensation reaction of two pyruvic acid (PA) molecules, proceeds over days in bulk solutions, while in submicron aerosols, it occurs in minutes. The experimental results are replicated in a kinetic model using an apparent interfacial reaction rate coefficient of k rxn = (0.9 +/- 0.2) x 10-3 M -1 s -1. The simulation reveals that surface activity of PA coupled with an enhanced interfacial reaction rate drives accelerated ZA formation in aerosols. Experimental and simulated results provide compelling evidence that the condensation reaction of PA occurs exclusively at the aerosol interface with a reaction rate coefficient that is enhanced by 4 orders of magnitude (similar to 104) relative to what is estimated for macroscale solutions.
引用
收藏
页码:11131 / 11138
页数:8
相关论文
共 50 条
  • [21] KINETICS AND MECHANISM FOR PYRUVIC ACID SEMICARBAZONE FORMATION
    PINO, T
    CORDES, EH
    JOURNAL OF ORGANIC CHEMISTRY, 1971, 36 (12): : 1668 - &
  • [22] FORMATION OF PYRUVIC-ACID BY OXIDATIVE DEHYDROGENATION OF LACTIC-ACID
    AI, M
    OHDAN, K
    CHEMISTRY LETTERS, 1995, (05) : 405 - 405
  • [23] The oxidation of lactic acid by bacteria with the formation of pyruvic acid and cetonic composites
    Maze, P
    COMPTES RENDUS DES SEANCES DE LA SOCIETE DE BIOLOGIE ET DE SES FILIALES, 1918, 81 : 1150 - 1152
  • [24] DECARBOXYLATION OF PYRUVIC ACID IN AQUEOUS SOLUTION BY THERMAL PROTEINOIDS
    HARDEBEC.HG
    KRAMPITZ, G
    WULF, L
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1968, 123 (01) : 72 - +
  • [25] Formation of lactic acid and pyruvic acid in blood containing Plasmodium knowlesi
    Wendel, WB
    Kimball, S
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1942, 145 (01) : 343 - 344
  • [26] Near Infrared Photochemistry of Pyruvic Acid in Aqueous Solution
    Larsen, Molly C.
    Vaida, Veronica
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (24): : 5840 - 5846
  • [27] Investigation of pyruvic acid photolysis at the air-liquid interface as a source of aqueous secondary organic aerosols
    Sui, Xiao
    Xu, Bo
    Kostko, Oleg
    Yu, Xiao-Ying
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 930
  • [28] Chemistry and Photochemistry of Pyruvic Acid at the Air-Water Interface
    Kappes, Keaten J.
    Deal, Alexandra M.
    Jespersen, Malte F.
    Blair, Sandra L.
    Doussin, Jean-Francois
    Cazaunau, Mathieu
    Pangui, Edouard
    Hopper, Brianna N.
    Johnson, Matthew S.
    Vaida, Veronica
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (04): : 1036 - 1049
  • [29] Photochemistry of the iron(III) complex with pyruvic acid in aqueous solutions
    X. Zhang
    Y. Gong
    F. Wu
    N. Deng
    I. P. Pozdnyakov
    E. M. Glebov
    V. P. Grivin
    V. F. Plyusnin
    N. M. Bazhinb
    Russian Chemical Bulletin, 2009, 58 : 1828 - 1836
  • [30] The mechanism of citric acid formation in animal bodies in connection with the decomposition of pyruvic acid
    Martius, C
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1943, 279 : 96 - 104