Artificial fi cial intelligence for geoscience: Progress, challenges, and perspectives

被引:119
|
作者
Zhao, Tianjie [1 ]
Wang, Sheng [2 ]
Ouyang, Chaojun [3 ]
Chen, Min [4 ]
Liu, Chenying [5 ]
Zhang, Jin [6 ]
Yu, Long [2 ]
Wang, Fei [7 ,28 ]
Xie, Yong [8 ,29 ]
Li, Jun [2 ]
Wang, Fang [9 ,28 ,29 ]
Grunwald, Sabine [10 ]
Wong, Bryan M. [11 ,12 ]
Zhang, Fan [13 ]
Qian, Zhen [1 ]
Xu, Yongjun [4 ,7 ]
Yu, Chengqing [7 ]
Han, Wei [2 ]
Sun, Tao [7 ]
Shao, Zezhi [7 ,28 ]
Qian, Tangwen [7 ,28 ]
Chen, Zhao [7 ]
Zeng, Jiangyuan [2 ]
Zhang, Huai [1 ,14 ]
Letu, Husi [1 ,2 ]
Zhang, Bing [1 ,2 ]
Wang, Li [1 ,2 ]
Luo, Lei [2 ,15 ]
Shi, Chong [1 ,2 ]
Su, Hongjun [16 ]
Zhang, Hongsheng [17 ]
Yin, Shuai [1 ,2 ]
Huang, Ni [1 ,2 ]
Zhao, Wei [1 ,2 ]
Li, Nan [18 ,19 ]
Zheng, Chaolei [1 ,2 ]
Zhou, Yang [20 ]
Huang, Changping [1 ,2 ,28 ]
Feng, Defeng [28 ]
Xu, Qingsong [5 ]
Wu, Yan [21 ,28 ]
Hong, Danfeng [2 ,28 ]
Wang, Zhenyu [22 ]
Lin, Yinyi [13 ]
Zhang, Tangtang [23 ]
Kumar, Prashant [26 ,27 ]
Plaza, Antonio [24 ]
Chanussot, Jocelyn [25 ]
Zhang, Jiabao [9 ,28 ]
Shi, Jiancheng [30 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430078, Peoples R China
[3] Chinese Acad Sci, Inst Mt Hazards & Environm, State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China
[4] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China
[5] Tech Univ Munich, Data Sci Earth Observat, D-80333 Munich, Germany
[6] Hohai Univ, Yangtze Inst Conservat & Dev, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[8] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
[9] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[10] Univ Florida, Soil Water & Ecosyst Sci Dept, POB 110290, Gainesville, FL USA
[11] Univ Calif Riverside, Mat Sci Engn Program, Dept Chem, Riverside, CA 92521 USA
[12] Univ Calif Riverside, Dept Phys Astron, Riverside, CA 92521 USA
[13] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[15] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[16] Hohai Univ, Coll Geog & Remote Sensing, Nanjing 211100, Peoples R China
[17] Univ Hong Kong, Dept Geog, Hong Kong 999077, Peoples R China
[18] Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Peoples R China
[19] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 210044, Peoples R China
[20] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disaster, Minist Educ, Nanjing 210044, Peoples R China
[21] Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China
[22] UFZ Helmholtz Ctr Environm Res, Dept Catchment Hydrol, D-06108 Halle, Saale, Germany
[23] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou 730000, Peoples R China
[24] Univ Extremadura, Hyperspectral Comp Lab, Caceres 10003, Spain
[25] Univ Grenoble Alpes, CNRS, Grenoble INP, Inria,LJK, F-38000 Grenoble, France
[26] Univ Surrey, Fac Engn & Phys Sci, Global Ctr Clean Air Res GCARE, Sch Sustainabil Civil & Environm Engn, Guildford GU2 7XH, England
[27] Univ Surrey, Inst Sustainabil, Guildford GU2 7XH, Surrey, England
[28] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[29] Tech Univ Munich, Dept Chem, D-85748 Munich, Germany
[30] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
来源
INNOVATION | 2024年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; MACHINE LEARNING-METHODS; SOIL-MOISTURE RETRIEVAL; DATA-DRIVEN DISCOVERY; EARTH SYSTEM MODELS; OF-THE-ART; PLANETARY SCIENCE; NEXT-GENERATION; DIGITAL EARTH; LAND-COVER;
D O I
10.1016/j.xinn.2024.100691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Perspectives, Challenges, and the Future of Biomedical Technology and Artificial Intelligence
    Tovar-Arriaga, Saul
    Perez-Soto, Gerardo Israel
    Camarillo-Gomez, Karla Anhel
    Aviles, Marcos
    Rodriguez-Resendiz, Juvenal
    TECHNOLOGIES, 2024, 12 (11)
  • [42] Artificial intelligence: challenges, perspectives and neutrosophy role.
    Leyva-Vazquez, Maikel
    Smarandache, Florentin
    DILEMAS CONTEMPORANEOS-EDUCACION POLITICA Y VALORES, 2018, 6
  • [43] Artificial Intelligence Meets Tactical Autonomy: Challenges and Perspectives
    Rawat, Danda B.
    2022 IEEE 4TH INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE, COGMI, 2022, : 49 - 51
  • [44] Intentional Forgetting in Artificial Intelligence Systems: Perspectives and Challenges
    Timm, Ingo J.
    Staab, Steffen
    Siebers, Michael
    Schon, Claudia
    Schmid, Ute
    Sauerwald, Kai
    Reuter, Lukas
    Ragni, Marco
    Niederee, Claudia
    Maus, Heiko
    Kern-Isberner, Gabriele
    Jilek, Christian
    Friemann, Paulina
    Eiter, Thomas
    Dengel, Andreas
    Dames, Hannah
    Bock, Tanja
    Berndt, Jan Ole
    Beierle, Christoph
    KI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11117 : 357 - 365
  • [45] Causality for Trustworthy Artificial Intelligence: Status, Challenges and Perspectives
    Rawal, Atul
    Raglin, Adrienne
    Rawat, Danda b.
    Sadler, Brian m.
    Mccoy, James
    ACM COMPUTING SURVEYS, 2025, 57 (06)
  • [46] Challenges in Implementing Artifi cial Intelligence for Naval Warfare
    Johnson, Bonnie
    NAVAL ENGINEERS JOURNAL, 2023, 135 (01) : 95 - 103
  • [47] Artificial intelligence and fetal ultrasound biometry: Challenges and perspectives
    Grandjean, Gaelle Ambroise
    Oster, Julien
    Dap, Matthieu
    Morel, Olivier
    Hossu, Gabriela
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (04) : 200 - 201
  • [48] Artificial Intelligence and ChatGPT: perspectives and challenges for Bibliographic Classification
    da Silva, Renata Lima
    de Sousa, Brisa Pozzi
    REVISTA IBERO-AMERICANA DE CIENCIA DA INFORMACAO, 2024, 17 (01): : 44 - 65
  • [49] Perspectives and Challenges of Telemedicine and Artificial Intelligence in Pediatric Dermatology
    Zama, Daniele
    Borghesi, Andrea
    Ranieri, Alice
    Manieri, Elisa
    Pierantoni, Luca
    Andreozzi, Laura
    Dondi, Arianna
    Neri, Iria
    Lanari, Marcello
    Calegari, Roberta
    CHILDREN-BASEL, 2024, 11 (11):
  • [50] Overview of Arti fi cial Intelligence Research Within Hip and Knee Arthroplasty
    Mickley, John P.
    Kaji, Elizabeth S.
    Khosravi, Bardia
    Mulford, Kellen L.
    Taunton, Michael J.
    Wyles, Cody C.
    ARTHROPLASTY TODAY, 2024, 27