Artificial fi cial intelligence for geoscience: Progress, challenges, and perspectives

被引:119
|
作者
Zhao, Tianjie [1 ]
Wang, Sheng [2 ]
Ouyang, Chaojun [3 ]
Chen, Min [4 ]
Liu, Chenying [5 ]
Zhang, Jin [6 ]
Yu, Long [2 ]
Wang, Fei [7 ,28 ]
Xie, Yong [8 ,29 ]
Li, Jun [2 ]
Wang, Fang [9 ,28 ,29 ]
Grunwald, Sabine [10 ]
Wong, Bryan M. [11 ,12 ]
Zhang, Fan [13 ]
Qian, Zhen [1 ]
Xu, Yongjun [4 ,7 ]
Yu, Chengqing [7 ]
Han, Wei [2 ]
Sun, Tao [7 ]
Shao, Zezhi [7 ,28 ]
Qian, Tangwen [7 ,28 ]
Chen, Zhao [7 ]
Zeng, Jiangyuan [2 ]
Zhang, Huai [1 ,14 ]
Letu, Husi [1 ,2 ]
Zhang, Bing [1 ,2 ]
Wang, Li [1 ,2 ]
Luo, Lei [2 ,15 ]
Shi, Chong [1 ,2 ]
Su, Hongjun [16 ]
Zhang, Hongsheng [17 ]
Yin, Shuai [1 ,2 ]
Huang, Ni [1 ,2 ]
Zhao, Wei [1 ,2 ]
Li, Nan [18 ,19 ]
Zheng, Chaolei [1 ,2 ]
Zhou, Yang [20 ]
Huang, Changping [1 ,2 ,28 ]
Feng, Defeng [28 ]
Xu, Qingsong [5 ]
Wu, Yan [21 ,28 ]
Hong, Danfeng [2 ,28 ]
Wang, Zhenyu [22 ]
Lin, Yinyi [13 ]
Zhang, Tangtang [23 ]
Kumar, Prashant [26 ,27 ]
Plaza, Antonio [24 ]
Chanussot, Jocelyn [25 ]
Zhang, Jiabao [9 ,28 ]
Shi, Jiancheng [30 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430078, Peoples R China
[3] Chinese Acad Sci, Inst Mt Hazards & Environm, State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China
[4] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China
[5] Tech Univ Munich, Data Sci Earth Observat, D-80333 Munich, Germany
[6] Hohai Univ, Yangtze Inst Conservat & Dev, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[8] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
[9] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[10] Univ Florida, Soil Water & Ecosyst Sci Dept, POB 110290, Gainesville, FL USA
[11] Univ Calif Riverside, Mat Sci Engn Program, Dept Chem, Riverside, CA 92521 USA
[12] Univ Calif Riverside, Dept Phys Astron, Riverside, CA 92521 USA
[13] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[15] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[16] Hohai Univ, Coll Geog & Remote Sensing, Nanjing 211100, Peoples R China
[17] Univ Hong Kong, Dept Geog, Hong Kong 999077, Peoples R China
[18] Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Peoples R China
[19] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 210044, Peoples R China
[20] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disaster, Minist Educ, Nanjing 210044, Peoples R China
[21] Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China
[22] UFZ Helmholtz Ctr Environm Res, Dept Catchment Hydrol, D-06108 Halle, Saale, Germany
[23] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou 730000, Peoples R China
[24] Univ Extremadura, Hyperspectral Comp Lab, Caceres 10003, Spain
[25] Univ Grenoble Alpes, CNRS, Grenoble INP, Inria,LJK, F-38000 Grenoble, France
[26] Univ Surrey, Fac Engn & Phys Sci, Global Ctr Clean Air Res GCARE, Sch Sustainabil Civil & Environm Engn, Guildford GU2 7XH, England
[27] Univ Surrey, Inst Sustainabil, Guildford GU2 7XH, Surrey, England
[28] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[29] Tech Univ Munich, Dept Chem, D-85748 Munich, Germany
[30] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
来源
INNOVATION | 2024年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; MACHINE LEARNING-METHODS; SOIL-MOISTURE RETRIEVAL; DATA-DRIVEN DISCOVERY; EARTH SYSTEM MODELS; OF-THE-ART; PLANETARY SCIENCE; NEXT-GENERATION; DIGITAL EARTH; LAND-COVER;
D O I
10.1016/j.xinn.2024.100691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Artificial fi cial Intelligence in Emergency Medicine: A Case for More
    Garg, Nupur
    ANNALS OF EMERGENCY MEDICINE, 2024, 84 (02) : 154 - 156
  • [2] Regulatory Aspects of Artificial fi cial Intelligence and Machine Learning
    Pantanowitz, Liron
    Hanna, Matthew
    Pantanowitz, Joshua
    Lennerz, Joe
    Henricks, Walter H.
    Shen, Peter
    Quinn, Bruce
    Bennet, Shannon
    Rashidi, Hooman H.
    MODERN PATHOLOGY, 2024, 37 (12)
  • [3] Artificial fi cial Intelligence and Nurse Practitioners - Part II
    Ferrara, Stephen A.
    JNP- THE JOURNAL FOR NURSE PRACTITIONERS, 2024, 20 (09):
  • [4] Autonomous Artificial fi cial Intelligence vs Artificial fi cial Intelligence-Assisted Human Optical Diagnosis of Colorectal Polyps: A Randomized Controlled Trial
    Djinbachian, Roupen
    Haumesser, Claire
    Taghiakbari, Mahsa
    Pohl, Heiko
    Barkun, Alan
    Sidani, Sacha
    Kiow, Jeremy Liu Chen
    Panzini, Benoit
    Bouchard, Simon
    Deslandres, Erik
    Alj, Abla
    von Renteln, Daniel
    GASTROENTEROLOGY, 2024, 167 (02) : 392 - 399.e2
  • [5] Artificial fi cial intelligence in medicine: Between Saturn and Cronus
    Quintans-Junior, Lucindo Jose
    Araujo, Adriano Antunes de Souza
    Martins-Filho, Paulo Ricardo
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2024, 368 (05): : 551 - 552
  • [6] Explainable arti fi cial intelligence
    Rousseau, Axel-Jan
    Geubbelmans, Melvin
    Valkenborg, Dirk
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (04) : 491 - 494
  • [7] Implementation of Digital Pathology and Artificial fi cial Intelligence in Routine Pathology Practice
    Zhang, David Y.
    Venkat, Arsha
    Khasawneh, Hamdi
    Sali, Rasoul
    Zhang, Valerio
    Pei, Zhiheng
    LABORATORY INVESTIGATION, 2024, 104 (09)
  • [8] Phase analysis: a novel and useful application of artificial fi cial intelligence in endoscopy
    Diehl, David L.
    GASTROINTESTINAL ENDOSCOPY, 2024, 99 (05) : 839 - 840
  • [9] Arti fi cial Intelligence in Endodontic Education
    Aminoshariae, Anita
    Nosrat, Ali
    Nagendrababu, Venkateshbabu
    Dianat, Omid
    Mohammad-Rahimi, Hossein
    O'Keefe, Abbey W.
    Setzer, Frank C.
    JOURNAL OF ENDODONTICS, 2024, 50 (05) : 562 - 578
  • [10] Integrating Artificial fi cial Intelligence Into Virtual Simulations to Develop Entrustable Professional Activities
    Anthamatten, Angelina
    Holt, Jo Ellen
    JNP- THE JOURNAL FOR NURSE PRACTITIONERS, 2024, 20 (09):