Data-driven machine learning forecasting and design models for the tensile stress-strain response of UHPC

被引:0
|
作者
Barkhordari, Mohammad Sadegh [1 ]
Jaaz, Hussein Abad Gazi [2 ]
Jawdhari, Akram [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Civil & Environm Engn, Tehran, Iran
[2] South Dakota State Univ, Dept Civil & Environm Engn, Brookings, SD 57007 USA
关键词
Ultra-high performance concrete; Stress strain behavior; Tension; Machine learning; Ensemble methods; Interpretation; Regression; FIBER-REINFORCED CONCRETE; HIGH-PERFORMANCE CONCRETE; STRENGTH; BEHAVIOR; FRC;
D O I
10.1016/j.istruc.2024.107965
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The tensile behavior of ultra-high performance concrete (UHPC) is distinctive from conventional concrete (CC) and is typically included in design. This study leverages machine learning (ML) techniques and regression analysis to predict the full stress-strain behavior of UHPC in tension and characterizes the effects of various parameters. A comprehensive database comprising 500 data points from 24 experimental programs was assembled. Multiple ensemble learning algorithms, including gradient boosting, extreme gradient boosting (XGBoost), bagging regressor, and extremely randomized trees (ExtraTrees), were evaluated and compared against traditional multiple linear regression. The ExtraTrees model outperformed others, resulting in a mean absolute error (MAE) of 0.524 MPa, a root mean square error (RMSE) of 1.140 MPa, and a coefficient of determination (R2) of 0.80 for predicting the first cracking stress (FCS). For strain at first cracking (SFC), ExtraTrees achieved an MAE of 0.0175 mu epsilon and an R2 of 0.953. The model also performed well for post-cracking stress (PCS) and post-cracking strain (SPC). Of the six feature inputs considered -compressive strength (fc') of UHPC matrix, fiber reinforcement index (RI), fiber length (Lf), fiber volume (Vf), fiber diameter (Df), and fiber type-interpretation by SHAP values revealed that fc', Vf, and RI are the most influential. Additionally, a webbased interface was developed using the ML models, allowing users to predict FCS, SFC, PCS, and SPC and generate a bilinear tensile stress-strain curve, applicable for both softening and hardening UHPC types. The interface is intended for design purposes.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Flood forecasting in large rivers with data-driven models
    Phuoc Khac-Tien Nguyen
    Chua, Lloyd Hock-Chye
    Son, Lam Hung
    NATURAL HAZARDS, 2014, 71 (01) : 767 - 784
  • [32] Data-driven models for flooding forecasting in small watersheds
    Zubelzu, Sergio
    Matendo, Sara E.
    Galan, Victor
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 4901 - 4905
  • [33] Data-driven bio-mimetic composite design: Direct prediction of stress-strain curves from structures using cGANs
    Chen, Chih-Hung
    Chen, Kuan-Ying
    Shu, Yi-Chung
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2024, 193
  • [34] Machine learning predictions on the compressive stress-strain response of lattice-based metamaterials
    Xiao, Lijun
    Shi, Gaoquan
    Song, Weidong
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 300
  • [35] Estimation of data-driven streamflow predicting models using machine learning methods
    Siddiqi T.A.
    Ashraf S.
    Khan S.A.
    Iqbal M.J.
    Arabian Journal of Geosciences, 2021, 14 (11)
  • [36] Test Data-Driven Machine Learning Models for Reliable Quantum Circuit Output
    Saravanan, Vedika
    Saeed, Samah Mohamed
    2021 IEEE EUROPEAN TEST SYMPOSIUM (ETS 2021), 2021,
  • [37] Unlocking the Potential of Remanufacturing Through Machine Learning and Data-Driven Models—A Survey
    Kim, Yong Han
    Ye, Wei
    Kumar, Ritbik
    Bail, Finn
    Dvorak, Julia
    Tan, Yanchao
    May, Marvin Carl
    Chang, Qing
    Athinarayanan, Ragu
    Lanza, Gisela
    Sutherland, John W.
    Li, Xingyu
    Nath, Chandra
    Algorithms, 2024, 17 (12)
  • [38] Novel Big Data-Driven Machine Learning Models for Drug Discovery Application
    Sripriya Akondi, Vishnu
    Menon, Vineetha
    Baudry, Jerome
    Whittle, Jana
    MOLECULES, 2022, 27 (03):
  • [39] Comparison of Machine Learning Models for Data-Driven Aircraft Icing Severity Evaluation
    Li, Sibo
    Paoli, Roberto
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2021, AIAA International (18): : 973 - 977
  • [40] Interpretable and explainable predictive machine learning models for data-driven protein engineering
    Medina-Ortiz, David
    Khalifeh, Ashkan
    Anvari-Kazemabad, Hoda
    Davari, Mehdi D.
    BIOTECHNOLOGY ADVANCES, 2025, 79