Test Data-Driven Machine Learning Models for Reliable Quantum Circuit Output

被引:3
|
作者
Saravanan, Vedika [1 ]
Saeed, Samah Mohamed [1 ]
机构
[1] CUNY, City Coll New York, New York, NY 10010 USA
关键词
Quantum circuit; Machine learning; Reliability; Quantum test circuits; Noisy Intermediate-Scale Quantum (NISQ) computer; Quantum circuit mapping;
D O I
10.1109/ETS50041.2021.9465405
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
While current quantum computers, referred to as Noisy Intermediate-Scale Quantum (NISQ) computers, are expected to be beneficial for different applications, they are prone to different types of errors. In order to enhance the reliability of quantum systems, noise-aware quantum compilers are used to generate physical quantum circuits to be executed on NISQ computers. The quantum hardware is calibrated very frequently and its error rates are computed accordingly. Based on the hardware error rates, a quantum compiler allocates physical qubits and schedules quantum operations. However, error rates may change post-calibration. To incorporate dynamic error rates into quantum circuit compilation with minimum cost, we propose a Machine Learning (ML)-based scheme to detect the incorrect output of the quantum circuit and predict the Probability of Successful Trials (PST) with high accuracy. Our approach can verify the error rates of the quantum hardware and validate the correctness of the extracted quantum circuit output. We provide a case study of our ML-based reliability models using IBM Q16 Melbourne quantum computer. Our results show that the proposed scheme achieves a very high prediction accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Data-driven models in machine learning for crime prediction
    Wawrzyniak, Zbigniew M.
    Jankowski, Stanislaw
    Szczechla, Eliza
    Szymanski, Zbigniew
    Pytlak, Radoslaw
    Michalak, Pawel
    Borowik, Grzegorz
    2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [2] Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
    Kreinovich, Vladik
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2513 - 2514
  • [3] A Novel Data-Driven Attack Method on Machine Learning Models
    Sadikoglu, Emre
    Kosesoy, Irfan
    Gok, Murat
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2024, 30 (03) : 402 - 417
  • [4] Machine Learning Methods for Development of Data-Driven Turbulence Models
    Yakovenko, Sergey N.
    Razizadeh, Omid
    HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020), 2020, 2288
  • [5] Classification of machine learning frameworks for data-driven thermal fluid models
    Chang, Chih-Wei
    Dinh, Nam T.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 135 : 559 - 579
  • [6] Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure
    Alemu, Yohannes L.
    Lahmer, Tom
    Walther, Christian
    ENG, 2024, 5 (02): : 629 - 656
  • [7] Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type
    Qin, Yifan
    Wu, Jinlong
    Xiao, Wen
    Wang, Kun
    Huang, Anbing
    Liu, Bowen
    Yu, Jingxuan
    Li, Chuhao
    Yu, Fengyu
    Ren, Zhanbing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (22)
  • [8] Efficient Data-Driven Machine Learning Models for Water Quality Prediction
    Dritsas, Elias
    Trigka, Maria
    COMPUTATION, 2023, 11 (02)
  • [9] Error-mitigated data-driven circuit learning on noisy quantum hardware
    Kathleen E. Hamilton
    Raphael C. Pooser
    Quantum Machine Intelligence, 2020, 2
  • [10] Error-mitigated data-driven circuit learning on noisy quantum hardware
    Hamilton, Kathleen E.
    Pooser, Raphael C.
    QUANTUM MACHINE INTELLIGENCE, 2020, 2 (01)