Modeling of nonlinear block-oriented systems using orthonormal basis and radial basis functions

被引:0
|
作者
StanisLawski, Rafal [1 ]
Hunek, Wojciech P. [1 ]
Latawiec, Krzysztof J. [1 ]
机构
[1] Department of Electrical, Control and Computer Engineering, Opole University of Technology, ul, Sosnkowskiego 31, 45-272 Opole, Poland
来源
Systems Science | 2009年 / 35卷 / 02期
关键词
Nonlinear systems - Radial basis function networks - Gradient methods - Stochastic systems - Functions - Magnetic levitation vehicles - Inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a methodology for modeling the Wiener, Hammerstein and feedback-nonlinear systems via orthonormal basis and radial basis functions. The approach is computationally effective, in particular, in terms of elimination of the disastrous bilinearity effect due to the use of regular or inverse orthonormal basis functions to model the linear dynamic block. Scaling parameters of orthonormal basis and radial basis functions are updated recursively using the stochastic gradient method. The modeling of a nonlinear static block with radial basis functions is particularly recommended for the Hammerstein and feedback-nonlinear systems. A simulation study for the magnetic levitation process confirms the attractiveness of the approach.
引用
收藏
页码:11 / 18
相关论文
共 50 条
  • [31] Modeling of low density polyethylene tubular reactor using nonlinear block-oriented model
    Muhammad, D.
    Ahmad, Z.
    Aziz, N.
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 39 - 44
  • [32] Modeling of open-loop stable linear systems using a combination of a finite fractional orthonormal basis functions
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    2010 15TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2010, : 411 - 414
  • [33] Block-oriented feedforward control with demonstration to nonlinear parameterized Wiener modeling
    Rollins, Derrick K.
    Mei, Yong
    Loveland, Stephanie D.
    Bhandari, Nidhi
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 109 : 397 - 404
  • [34] Robust fuzzy control of nonlinear systems using shape-adaptive radial basis functions
    Han, HG
    Su, CY
    FUZZY SETS AND SYSTEMS, 2002, 125 (01) : 23 - 38
  • [35] Orthonormal basis functions for modelling continuous-time systems
    Akçay, H
    Ninness, B
    SIGNAL PROCESSING, 1999, 77 (03) : 261 - 274
  • [36] Nonlinear systems approximation using a piecewise affine model based on a radial basis functions network
    Sakamoto, Masaru
    Dong, Duo
    Hamaguchi, Takashi
    Ota, Yutaka
    Itoh, Toshiaki
    Hashimoto, Yoshihiro
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2006, 39 (10) : 1078 - 1084
  • [38] Nonlinear modeling by radial basis function networks
    Ogawa, S
    Ikeguchi, T
    Matozaki, T
    Aihara, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (10) : 1608 - 1617
  • [39] Precise Modeling of Reverberant Room Responses Using Wavelet Decomposition and Orthonormal Basis Functions
    Hashemgeloogerdi, Sahar
    Bocko, Mark F.
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2018, 66 (1-2): : 21 - 33
  • [40] SYSTOLIC ARRAY FOR NONLINEAR MULTIDIMENSIONAL INTERPOLATION USING RADIAL BASIS FUNCTIONS
    BROOMHEAD, DS
    JONES, R
    MCWHIRTER, JG
    SHEPHERD, TJ
    ELECTRONICS LETTERS, 1990, 26 (01) : 7 - 9