Modeling of nonlinear block-oriented systems using orthonormal basis and radial basis functions

被引:0
|
作者
StanisLawski, Rafal [1 ]
Hunek, Wojciech P. [1 ]
Latawiec, Krzysztof J. [1 ]
机构
[1] Department of Electrical, Control and Computer Engineering, Opole University of Technology, ul, Sosnkowskiego 31, 45-272 Opole, Poland
来源
Systems Science | 2009年 / 35卷 / 02期
关键词
Nonlinear systems - Radial basis function networks - Gradient methods - Stochastic systems - Functions - Magnetic levitation vehicles - Inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a methodology for modeling the Wiener, Hammerstein and feedback-nonlinear systems via orthonormal basis and radial basis functions. The approach is computationally effective, in particular, in terms of elimination of the disastrous bilinearity effect due to the use of regular or inverse orthonormal basis functions to model the linear dynamic block. Scaling parameters of orthonormal basis and radial basis functions are updated recursively using the stochastic gradient method. The modeling of a nonlinear static block with radial basis functions is particularly recommended for the Hammerstein and feedback-nonlinear systems. A simulation study for the magnetic levitation process confirms the attractiveness of the approach.
引用
收藏
页码:11 / 18
相关论文
共 50 条
  • [21] Orthonormal Basis Functions for Memory Predistorter in Oversampled Systems
    Yao, Saijie
    Huang, Hao
    Qian, Hua
    Feng, Weifeng
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2015, 25 (03) : 202 - 212
  • [22] Parameter estimation for block-oriented nonlinear systems using the key term separation
    Ji, Yan
    Zhang, Chen
    Kang, Zhen
    Yu, Tao
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (09) : 3727 - 3752
  • [23] Parameter Identification of Block-Oriented Nonlinear Systems in the Frequency Domain
    Shanshiashvili, B.
    Rigishvili, T.
    IFAC PAPERSONLINE, 2020, 53 (02): : 10695 - 10700
  • [24] Piecewise affine modeling using radial basis functions network
    Harata, Y
    Ito, T
    Hashimoto, Y
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 1994 - 1998
  • [25] Recursive identification of block-oriented nonlinear systems in the presence of outliers
    Filipovic, Vojislav
    JOURNAL OF PROCESS CONTROL, 2019, 78 : 1 - 12
  • [26] Modeling and adaptive control of nonlinear dynamical systems using radial basis function network
    Rajesh Kumar
    Smriti Srivastava
    J. R. P. Gupta
    Soft Computing, 2017, 21 : 4447 - 4463
  • [27] Modeling and adaptive control of nonlinear dynamical systems using radial basis function network
    Kumar, Rajesh
    Srivastava, Smriti
    Gupta, J. R. P.
    SOFT COMPUTING, 2017, 21 (15) : 4447 - 4463
  • [28] Regularized system identification using orthonormal basis functions
    Chen, Tianshi
    Ljung, Lennart
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 1291 - 1296
  • [29] IDENTIFICATION OF NONLINEAR BLOCK-ORIENTED SYSTEMS BY THE RECURSIVE KERNEL ESTIMATE
    KRZYZAK, A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1993, 330 (03): : 605 - 627
  • [30] Frequency domain analysis and identification of block-oriented nonlinear systems
    Jing, Xingjian
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (22) : 5427 - 5442