Modeling of nonlinear block-oriented systems using orthonormal basis and radial basis functions

被引:0
|
作者
StanisLawski, Rafal [1 ]
Hunek, Wojciech P. [1 ]
Latawiec, Krzysztof J. [1 ]
机构
[1] Department of Electrical, Control and Computer Engineering, Opole University of Technology, ul, Sosnkowskiego 31, 45-272 Opole, Poland
来源
Systems Science | 2009年 / 35卷 / 02期
关键词
Nonlinear systems - Radial basis function networks - Gradient methods - Stochastic systems - Functions - Magnetic levitation vehicles - Inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a methodology for modeling the Wiener, Hammerstein and feedback-nonlinear systems via orthonormal basis and radial basis functions. The approach is computationally effective, in particular, in terms of elimination of the disastrous bilinearity effect due to the use of regular or inverse orthonormal basis functions to model the linear dynamic block. Scaling parameters of orthonormal basis and radial basis functions are updated recursively using the stochastic gradient method. The modeling of a nonlinear static block with radial basis functions is particularly recommended for the Hammerstein and feedback-nonlinear systems. A simulation study for the magnetic levitation process confirms the attractiveness of the approach.
引用
收藏
页码:11 / 18
相关论文
共 50 条
  • [1] Modeling of nonlinear block-oriented systems using orthonormal basis and radial basis functions
    Stanislawski, Rafal
    Hunek, Wojciech P.
    Latawiec, Krzysztof J.
    ICSENG 2008: INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING, 2008, : 55 - 58
  • [2] Identification of block-oriented nonlinear systems using orthonormal bases
    Gómez, JC
    Baeyens, E
    JOURNAL OF PROCESS CONTROL, 2004, 14 (06) : 685 - 697
  • [3] NONLINEAR-SYSTEMS IDENTIFICATION USING RADIAL BASIS FUNCTIONS
    CHEN, S
    BILLINGS, SA
    COWAN, CFN
    GRANT, PM
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (12) : 2513 - 2539
  • [4] NONLINEAR MODELING AND PREDICTION BY SUCCESSIVE APPROXIMATION USING RADIAL BASIS FUNCTIONS
    HE, XD
    LAPEDES, A
    PHYSICA D, 1994, 70 (03): : 289 - 301
  • [5] Nonlinear PLS using radial basis functions
    Wilson, DJH
    Irwin, GW
    Lightbody, G
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 1997, 19 (04) : 211 - 220
  • [6] Nonlinear aeroelastic/aeroservoelastic modeling by block-oriented identification
    Baldelli, DH
    Lind, R
    Brenner, M
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2005, 28 (05) : 1056 - 1064
  • [7] Nonlinear PLS modelling using radial basis functions
    Wilson, DJH
    Irwin, GW
    Lightbody, G
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3275 - 3276
  • [8] Nonlinear system identification using radial basis functions
    Mokhasi, Paritosh
    Rempfer, Dietmar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (02) : 121 - 162
  • [9] Heterogeneous object modeling using the radial basis functions
    Dong-Jin Yoo
    International Journal of Precision Engineering and Manufacturing, 2013, 14 : 1133 - 1140
  • [10] Heterogeneous Object Modeling Using the Radial Basis Functions
    Yoo, Dong-Jin
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2013, 14 (07) : 1133 - 1140