Joint Object Detection and Multi-Object Tracking Based on Hypergraph Matching

被引:0
|
作者
Cui, Zhoujuan [1 ,2 ]
Dai, Yuqi [3 ]
Duan, Yiping [1 ,2 ]
Tao, Xiaoming [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 23期
基金
中国国家自然科学基金;
关键词
multi-object tracking; object detection; hypergraph; hypergraph matching; data association;
D O I
10.3390/app142311098
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Addressing the challenges in online multi-object tracking algorithms under complex scenarios, where the independence among feature extraction, object detection, and data association modules leads to both error accumulation and the difficulty of maintaining visual consistency for occluded objects, we have proposed an end-to-end multi-object tracking method based on hypergraph matching (JDTHM). Initially, a feature extraction and object detection module is introduced to achieve preliminary localization and description of the objects. Subsequently, a deep feature aggregation module is designed to extract temporal information from historical tracklets, amalgamating features from object detection and feature extraction to enhance the consistency between the current frame features and the tracklet features, thus preventing identity swaps and tracklet breaks caused by object detection loss or distortion. Finally, a data association module based on hypergraph matching is constructed, integrating with object detection and feature extraction into a unified network, transforming the data association problem into a hypergraph matching problem between the tracklet hypergraph and the detection hypergraph, thereby achieving end-to-end model optimization. The experimental results demonstrate that this method has yielded favorable qualitative and quantitative analysis results on three multi-object tracking datasets, thereby validating its effectiveness in enhancing the robustness and accuracy of multi-object tracking tasks.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Multi-Object Detection and Tracking Based on Few-Shot Learning
    Luo, Da-Peng
    Du, Guo-Qing
    Zeng, Zhi-Peng
    Wei, Long-Sheng
    Gao, Chang-Xin
    Cheng, Ying
    Xiao, Fei
    Luo, Chen
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (01): : 183 - 191
  • [42] A Multi-object Detection and Tracking Method Based on the Fusion of Lidar and Camera
    Li, Chaoqun
    Qu, Ting
    Li, Xin
    Zhao, Haiyan
    Gao, Bingzhao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1174 - 1179
  • [43] Coupled detection and trajectory estimation for multi-object tracking
    Leibe, Bastian
    Schindler, Konrad
    Van Gool, Luc
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 849 - 856
  • [44] Online multi-object tracking by detection based on generative appearance models
    Riahi, Dorra
    Bilodeau, Guillaume-Alexandre
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 152 : 88 - 102
  • [45] A hybrid optimisation enabled deep learning for object detection and multi-object tracking
    Thirumalai, J.
    Gomathi, M.
    Sindhu, T. S.
    Kumar, A. Senthil
    Puviarasi, R.
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2024, 46 (03) : 150 - 165
  • [46] Radar detection improvement by integration of multi-object tracking
    Meng, LM
    Grimm, W
    Donne, J
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 1249 - 1255
  • [47] Approaches to Video Real time Multi-Object Tracking and Object Detection: A survey
    Bouraya, Sara
    Belangour, Abdessamad
    PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2021), 2021, : 145 - 151
  • [48] Hypergraphs for Joint Multi-View Reconstruction and Multi-Object Tracking
    Hofmann, Martin
    Wolf, Daniel
    Rigoll, Gerhard
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 3650 - 3657
  • [49] Detection-aware multi-object tracking evaluation
    SanMiguel, Juan C.
    Munoz, Jorge
    Poiesi, Fabio
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [50] Joint Conditional Random Field Filter for Multi-Object Tracking
    Luo Ronghua
    Min Huaqing
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2011, 8 (01): : 76 - 84