Joint Object Detection and Multi-Object Tracking Based on Hypergraph Matching

被引:0
|
作者
Cui, Zhoujuan [1 ,2 ]
Dai, Yuqi [3 ]
Duan, Yiping [1 ,2 ]
Tao, Xiaoming [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 23期
基金
中国国家自然科学基金;
关键词
multi-object tracking; object detection; hypergraph; hypergraph matching; data association;
D O I
10.3390/app142311098
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Addressing the challenges in online multi-object tracking algorithms under complex scenarios, where the independence among feature extraction, object detection, and data association modules leads to both error accumulation and the difficulty of maintaining visual consistency for occluded objects, we have proposed an end-to-end multi-object tracking method based on hypergraph matching (JDTHM). Initially, a feature extraction and object detection module is introduced to achieve preliminary localization and description of the objects. Subsequently, a deep feature aggregation module is designed to extract temporal information from historical tracklets, amalgamating features from object detection and feature extraction to enhance the consistency between the current frame features and the tracklet features, thus preventing identity swaps and tracklet breaks caused by object detection loss or distortion. Finally, a data association module based on hypergraph matching is constructed, integrating with object detection and feature extraction into a unified network, transforming the data association problem into a hypergraph matching problem between the tracklet hypergraph and the detection hypergraph, thereby achieving end-to-end model optimization. The experimental results demonstrate that this method has yielded favorable qualitative and quantitative analysis results on three multi-object tracking datasets, thereby validating its effectiveness in enhancing the robustness and accuracy of multi-object tracking tasks.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection
    Li, Qing
    Hu, Shaopeng
    Shimasaki, Kohei
    Ishii, Idaku
    SENSORS, 2023, 23 (08)
  • [32] Multi-Object Tracking Based on Formation Stability
    Xu, Liang
    Li, Weihai
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [33] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [34] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [35] Referring Multi-Object Tracking
    Wu, Dongming
    Han, Wencheng
    Wang, Tiancai
    Dong, Xingping
    Zhang, Xiangyu
    Shen, Jianbing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14633 - 14642
  • [36] MULTI-OBJECT TRACKING BASED ON MATHEMATICAL MORPHOLOGY
    Hao, Huijuan
    Xu, Jiyong
    INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2009, : 238 - 240
  • [37] Multi-Object Tracking in the Dark
    Wang, Xinzhe
    Ma, Kang
    Liu, Qiankun
    Zou, Yunhao
    Fu, Ying
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 382 - 392
  • [38] Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering
    Yoon, Young-chul
    Boragule, Abhijeet
    Song, Young-min
    Yoon, Kwangjin
    Jeon, Moongu
    2018 15TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2018, : 91 - 96
  • [39] Multi-object trajectory tracking
    Mei Han
    Wei Xu
    Hai Tao
    Yihong Gong
    Machine Vision and Applications, 2007, 18 : 221 - 232
  • [40] Multi-Object Detection and Tracking, Based on DNN, for Autonomous Vehicles: A Review
    Ravindran, Ratheesh
    Santora, Michael J.
    Jamali, Mohsin M.
    IEEE SENSORS JOURNAL, 2021, 21 (05) : 5668 - 5677