Depth-Visual-Inertial (DVI) Mapping System for Robust Indoor 3D Reconstruction

被引:0
|
作者
Hamesse, Charles [1 ,2 ]
Vlaminck, Michiel [2 ]
Luong, Hiep [2 ]
Haelterman, Rob [1 ]
机构
[1] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
[2] Univ Ghent, IMEC IPI URC, B-9000 Ghent, Belgium
来源
关键词
Mapping; localization; RGB-D perception; search and rescue robots; REAL-TIME; LIDAR; ODOMETRY; LIO;
D O I
10.1109/LRA.2024.3487496
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose the Depth-Visual-Inertial (DVI) mapping system: a robust multi-sensor fusion framework for dense 3D mapping using time-of-flight cameras equipped with RGB and IMU sensors. Inspired by recent developments in real-time LiDAR-based odometry and mapping, our system uses an error-state iterative Kalman filter for state estimation: it processes the inertial sensor's data for state propagation, followed by a state update first using visual-inertial odometry, then depth-based odometry. This sensor fusion scheme makes our system robust to degenerate scenarios (e.g. lack of visual or geometrical features, fast rotations) and to noisy sensor data, like those that can be obtained with off-the-shelf time-of-flight DVI sensors. For evaluation, we propose the new Bunker DVI Dataset, featuring data from multiple DVI sensors recorded in challenging conditions reflecting search-and-rescue operations. We show the superior robustness and precision of our method against previous work. Following the open science principle, we make both our source code and dataset publicly available.
引用
收藏
页码:11313 / 11320
页数:8
相关论文
共 50 条
  • [31] A robust approach for 3D cars reconstruction
    Auclair, Adrien
    Cohen, Laurent
    Vincent, Nicole
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 183 - +
  • [32] Robust technique for 3D shape reconstruction
    Boukamcha, Hamdi
    Ben Amara, Abdelkader
    Smach, Fethi
    Atri, Mohamed
    JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 21 : 333 - 339
  • [33] Low Cost 3D Mapping for Indoor Navigation
    Bergeon, Yves
    Hadda, Imed
    Krivanek, Vaclav
    Motsch, Jean
    Stefek, Alexandr
    INTERNATIONAL CONFERENCE ON MILITARY TECHNOLOGIES (ICMT 2015), 2015, : 689 - 693
  • [34] Improving 3D Indoor Mapping with Motion Data
    Du, Jianhao
    Ou, Yongsheng
    Sheng, Weihua
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [35] 3D Interference Mapping for Indoor IoT Scenarios
    Ivanov, Antoni
    Stoynov, Viktor
    Angelov, Kliment
    Stefanov, Radostin
    Atamyan, Dimitar
    Tonchev, Krasimir
    Poulkov, Vladimir
    2020 43RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2020, : 265 - 269
  • [36] Indoor-Outdoor 3D Reconstruction Alignment
    Cohen, Andrea
    Schonberger, Johannes L.
    Speciale, Pablo
    Sattler, Torsten
    Frahm, Jan-Michael
    Pollefeys, Marc
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 285 - 300
  • [37] A Review of Techniques for 3D Reconstruction of Indoor Environments
    Kang, Zhizhong
    Yang, Juntao
    Yang, Zhou
    Cheng, Sai
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (05)
  • [38] Exploration and Observation Planning for 3D Indoor Mapping
    Okada, Yuki
    Miura, Jun
    2015 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2015, : 599 - 604
  • [39] On Detailed 3D Reconstruction of Large Indoor Environments
    Bondarev, Egor
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399
  • [40] 3D RECONSTRUCTION BY PARAMETERIZED SURFACE MAPPING
    Langlois, Pierre-Alain
    Fisher, Matthew
    Wang, Oliver
    Kim, Vladimir
    Boulch, Alexandre
    Marlet, Renaud
    Russell, Bryan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3273 - 3277