Knowledge-constrained interest-aware multi-behavior recommendation with behavior pattern identification

被引:0
|
作者
Park, Gayeon [1 ]
Yang, Hyeongjun [1 ]
Yeom, Kyuhwan [1 ]
Jeon, Myeongheon [1 ]
Ko, Yunjeong [1 ]
Oh, Byungkook [2 ]
Lee, Kyong-Ho [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Konkuk Univ, Dept Comp Sci & Engn, 120 Neungdong Ro, Seoul 05029, South Korea
关键词
Multi-behavior recommendation; Multi-level knowledge graph;
D O I
10.1016/j.ins.2024.121652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems aim to accurately capture user preferences based on interacted items. Conventional recommender systems mainly rely on the singular-type behavior of users, which may limit their ability to handle practical scenarios (e.g., E-commerce). In contrast, multi-type behavior recommendation (MBR) exploits auxiliary types of behaviors (e.g., view, cart), as well as the target behavior (e.g., buy), and has proven to be an effective way to identify user preferences from various perspectives. Existing MBR methods assume that all auxiliary behaviors of a user have a positive relevance with the target behavior. However, users may not interact with items using all available behaviors, but the degree of relatedness is not explicitly taken into account. To address the issue, we propose a Knowledge-constrained Interest-aware Framework with Behavior Pattern Identification (KIPI). The proposed model identifies user-specific behavior patterns by introducing pair-wise dependency modeling to explicitly reflect the fine-grained relatedness between behavior pairs. Additionally, we enhance item representations by leveraging both instance-view knowledge graph (KG) and ontology-view KG, which provides broader concept information of items. Moreover, we design a concept-constrained Bayesian Personalized Ranking loss to reflect a user's general interest. Extensive studies on the real-world datasets demonstrate that our model outperforms state-of-the-art baselines.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Cascading graph contrastive learning for multi-behavior recommendation
    Yang, Jiangquan
    Li, Xiangxia
    Li, Bin
    Tian, Lianfang
    Xu, Bo
    Chen, Yanhong
    NEUROCOMPUTING, 2024, 610
  • [42] An Improvement of Graph Neural Network for Multi-behavior Recommendation
    Nguyen Bao Phuoc
    Duong Thuy Trang
    Phan Duy Hung
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 377 - 387
  • [43] Co-contrastive Learning for Multi-behavior Recommendation
    Li, Qingfeng
    Ma, Huifang
    Zhang, Ruoyi
    Jin, Wangyu
    Li, Zhixin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 32 - 45
  • [44] Neural Multi-Task Recommendation from Multi-Behavior Data
    Gao, Chen
    He, Xiangnan
    Gan, Dahua
    Chen, Xiangning
    Feng, Fuli
    Li, Yong
    Chua, Tat-Seng
    Jin, Depeng
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1554 - 1557
  • [45] Dual-Task Learning for Multi-Behavior Sequential Recommendation
    Luo, Jinwei
    He, Mingkai
    Lin, Xiaolin
    Pan, Weike
    Ming, Zhong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1379 - 1388
  • [46] Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
    Yang, Yuhao
    Huang, Chao
    Xia, Lianghao
    Liang, Yuxuan
    Yu, Yanwei
    Li, Chenliang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2263 - 2273
  • [47] Cascading Residual Graph Convolutional Network for Multi-Behavior Recommendation
    Yan, Mingshi
    Cheng, Zhiyong
    Gao, Chen
    Sun, Jing
    Liu, Fan
    Sun, Fuming
    Li, Haojie
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (01)
  • [48] Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment
    Zheng, Zhi
    Hu, Xiao
    Qiu, Zhaopeng
    Cheng, Yuan
    Gao, Shanshan
    Song, Yang
    Zhu, Hengshu
    Xiong, Hui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5681 - 5694
  • [49] Dynamic Multi-Behavior Sequence Modeling for Next Item Recommendation
    Cho, Junsu
    Hyun, Dongmin
    Lim, Dong won
    Cheon, Hyeon jae
    Park, Hyoung-iel
    Yu, Hwanjo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4199 - 4207
  • [50] Multi-behavior contrastive learning with graph neural networks for recommendation
    Zhao, Zihan
    Tong, Xiangrong
    Wang, Yingjie
    Zhang, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2024, 300