Knowledge-constrained interest-aware multi-behavior recommendation with behavior pattern identification

被引:0
|
作者
Park, Gayeon [1 ]
Yang, Hyeongjun [1 ]
Yeom, Kyuhwan [1 ]
Jeon, Myeongheon [1 ]
Ko, Yunjeong [1 ]
Oh, Byungkook [2 ]
Lee, Kyong-Ho [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Konkuk Univ, Dept Comp Sci & Engn, 120 Neungdong Ro, Seoul 05029, South Korea
关键词
Multi-behavior recommendation; Multi-level knowledge graph;
D O I
10.1016/j.ins.2024.121652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems aim to accurately capture user preferences based on interacted items. Conventional recommender systems mainly rely on the singular-type behavior of users, which may limit their ability to handle practical scenarios (e.g., E-commerce). In contrast, multi-type behavior recommendation (MBR) exploits auxiliary types of behaviors (e.g., view, cart), as well as the target behavior (e.g., buy), and has proven to be an effective way to identify user preferences from various perspectives. Existing MBR methods assume that all auxiliary behaviors of a user have a positive relevance with the target behavior. However, users may not interact with items using all available behaviors, but the degree of relatedness is not explicitly taken into account. To address the issue, we propose a Knowledge-constrained Interest-aware Framework with Behavior Pattern Identification (KIPI). The proposed model identifies user-specific behavior patterns by introducing pair-wise dependency modeling to explicitly reflect the fine-grained relatedness between behavior pairs. Additionally, we enhance item representations by leveraging both instance-view knowledge graph (KG) and ontology-view KG, which provides broader concept information of items. Moreover, we design a concept-constrained Bayesian Personalized Ranking loss to reflect a user's general interest. Extensive studies on the real-world datasets demonstrate that our model outperforms state-of-the-art baselines.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multi-Behavior Sequential Recommendation With Temporal Graph Transformer
    Xia, Lianghao
    Huang, Chao
    Xu, Yong
    Pei, Jian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6099 - 6112
  • [32] Multi-behavior Self-supervised Learning for Recommendation
    Xu, Jingcao
    Wang, Chaokun
    Wu, Cheng
    Song, Yang
    Zheng, Kai
    Wang, Xiaowei
    Wang, Changping
    Zhou, Guorui
    Gai, Kun
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 496 - 505
  • [33] Dual graph attention networks for multi-behavior recommendation
    Wei, Yunhe
    Ma, Huifang
    Wang, Yike
    Li, Zhixin
    Chang, Liang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (08) : 2831 - 2846
  • [34] Two-stage Learning for Multi-behavior Recommendation
    Yan M.-S.
    Cheng Z.-Y.
    Sun J.
    Wang F.-S.
    Sun F.-M.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (05): : 2446 - 2465
  • [35] Multi-behavior recommendation with SVD Graph Neural Networks
    Fu, Shengxi
    Ren, Qianqian
    Lv, Xingfeng
    Li, Jinbao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [36] Multiplex Graph Neural Networks for Multi-behavior Recommendation
    Zhang, Weifeng
    Mao, Jingwen
    Cao, Yi
    Xu, Congfu
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2313 - 2316
  • [37] Multi-behavior collaborative contrastive learning for sequential recommendation
    Chen, Yuzhe
    Cao, Qiong
    Huang, Xianying
    Zou, Shihao
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5033 - 5048
  • [38] DMR: disentangled and denoised learning for multi-behavior recommendation
    Zhang, Yijia
    Chen, Wanyu
    Cai, Fei
    Shi, Zhenkun
    Qi, Feng
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [39] MORO: A Multi-behavior Graph Contrast Network for Recommendation
    Jiang, Weipeng
    Duan, Lei
    Ding, Xuefeng
    Chen, Xiaocong
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 117 - 131
  • [40] Dual graph attention networks for multi-behavior recommendation
    Yunhe Wei
    Huifang Ma
    Yike Wang
    Zhixin Li
    Liang Chang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2831 - 2846